The invention relates generally to lighting systems, and more particularly to lighting systems having thermal management systems.
High efficiency lighting systems are continually being developed to compete with traditional area lighting sources, such as incandescent or florescent lighting. While light emitting diodes (LEDs) have traditionally been implemented in signage applications, advances in LED technology have fueled interest in using such technology in general area lighting applications. LEDs and organic LEDs are solid-state semiconductor devices that convert electrical energy into light. While LEDs implement inorganic semiconductor layers to convert electrical energy into light, organic LEDs (OLEDs) implement organic semiconductor layers to convert electrical energy into light. Significant developments have been made in providing general area lighting implementing LEDs and OLEDs.
One potential drawback in LED applications is that during usage, a significant portion of the electricity in the LEDs is converted into heat, rather than light. If the heat is not effectively removed from an LED lighting system, the LEDs will run at high temperatures, thereby lowering the efficiency and reducing the reliability of the LED lighting system. In order to utilize LEDs in general area lighting applications where a desired brightness is required, thermal management systems to actively cool the LEDs may be considered. Providing an LED-based general area lighting system that is compact, lightweight, efficient, and bright enough for general area lighting applications is challenging. While introducing a thermal management system to control the heat generated by the LEDs may be beneficial, the thermal management system itself also introduces a number of additional design challenges.
In one embodiment, a lighting system is provided. The lighting system, comprises a housing structure and a light source configured to provide illumination visible through an opening in the housing structure. The lighting system further comprises a thermal management system configured to cool the lighting system and comprising a plurality of synthetic jet devices secured within the housing structure by a plurality of contact points. The lighting system further comprises driver electronics configured to provide power to each of the light source and the thermal management system.
In another embodiment, a lighting system comprising an array of light emitting diodes and a thermal management system is provided. The array of light emitting diodes (LEDs) is arranged on a surface of a lighting plate. The thermal management system is arranged above the array of LEDs, and comprises a heat sink having a base and a plurality of fins extending therefrom and a plurality of synthetic jets. Each of the plurality of synthetic jet devices is arranged to produce a jet stream between a respective pair of the plurality of fins, wherein the plurality of synthetic jet devices are coupled to the lighting system at a plurality of contact points.
In another embodiment, there is provided a lighting system, comprising a light source, a housing structure and a plurality of synthetic jet structures. The housing structure comprises a plurality of slots. Each of the plurality of synthetic jet devices is configured to engage at least one of the plurality of slots.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Embodiments of the invention generally relate to LED-based area lighting systems. A lighting system is provided with driver electronics, LED light source and an active cooling system, which includes synthetic jets arranged and secured into the system in a manner which optimizes actuation of the synthetic jets and air flow through thereby providing a more efficient lighting system than previous designs. In one embodiment, the lighting system fits into a standard 6″ (15.2 cm) halo and leaves approximately 0.5″ (1.3 cm) between the lamp and halo. Alternatively, the lighting system may be scaled differently, depending on the application. The presently described embodiments provide a lighting source, which produces approximately 1500 lumens (lm) with a driver electronics efficiency of 90%, and may be useful in area lighting applications. The thermal management system includes synthetic jet cooling which provides an air flow in and out of the lighting system, allowing LED junction temperatures to remain less than 100° C. for the disclosed embodiments.
Advantageously, in one embodiment, the lighting system uses a conventional screw-in base (i.e., Edison base) that is connected to the electrical grid. The electrical power is appropriately supplied to the thermal management system and to the light source by the same driver electronics unit. In one embodiment, the LEDs of the light source are driven at 500 mA and 59.5 V while the synthetic jets of the thermal management system are driven with less than 200 Hz and 120 V (peak-to-peak). The LEDs provide a total of over 1500 steady state face lumens, which is sufficient for general area lighting applications. In the illustrated embodiments described below, synthetic jet devices are provided to work in conjunction with a heat sink having a plurality of fins, and air ports, to both actively and passively cool the LEDs. As will be described, the synthetic jet devices are excited with a desired power level to provide adequate cooling during illumination of the LEDs.
As described further below, the synthetic jets are arranged vertically with regard to the lighting surface. The synthetic jets are arranged parallel to one another and are configured to provide sufficient air flow to cool the light source. The synthetic jets are arranged to provide air flow across fins of a heat sink. In order to provide increased airflow, while minimizing vibrations transferred to the housing of the lighting system, a unique packaging configuration of the synthetic jets is provided. In accordance with embodiments disclosed herein, the synthetic jets are secured to housing structures of the lighting system by a contact point attachment technique.
As used herein, “contact point attachment” refers to securing an object, here a synthetic jet device, to a structure, here a housing structure, at multiple points of engagement along a periphery of the object. Each point of engagement encompasses a limited length along the periphery. As used herein, the term “point” connotes a discrete area of contact that is minimized when compared to the periphery of the object, as a whole. For instance, each “contact point” wherein a portion of the periphery of the synthetic jet is secured to the structure, holds the object along a length that is less than 10% of the total length of the periphery. More specifically, for a circular synthetic jet, the periphery of the synthetic jet is engaged at each contact point for a length that is less than 10% of the circumference of the synthetic jet device. Thus, as used herein, the term “contact point” refers to a region of contact that is less than 10% of the circumference of the synthetic jet device. In contrast, a securing mechanism that contacts and holds a synthetic jet device at a single contact region that is greater than 10% of the circumference (or total length of the periphery for a non-circular device) is not considered a “contact point,” but rather would be an entire contact region, or the like. In one embodiment, each synthetic jet is held in place at three contact points. By securing each synthetic jet utilizing a point contact configuration, rather than clamping large peripheral areas of the synthetic jet, movement of the synthetic jet is not unnecessarily restrained, thereby allowing maximization of membrane deflection, and thus increased air flow. Further, point contacts provide minimal vibration transfer from the synthetic jet to the housing of the lighting system, which is generally desirable. Because the disclosed embodiments provide at least three contact points for securing each of the synthetic jets within the lighting system, mechanical stability of the synthetic jets is not compromised.
Referring now to
As will also be described further below, the thermal management system 14 is configured to cool the LEDs such that the LED junction temperatures remain at less than 100° C. under normal operating conditions. In one embodiment, the thermal management system 14 includes synthetic jet devices 18, heat sinks 20 and air ports 22 which are configured to work in conjunction to provide the desired cooling and air exchange for the lighting system 10. As will be described further below, the synthetic jet devices 18 are arranged and secured utilizing a point attachment technique which advantageously maximizes air flow production and synthetic jet stability, while minimizing vibration transfer to the housing of the lighting system 10.
The driver electronics 16 include an LED power supply 24 and a synthetic jet power supply 26. In accordance with one embodiment, the LED power supply 24 and the synthetic jet power supply 26 each comprise a number of chips and integrated circuits residing on the same system board, such as a printed circuit board (PCB), wherein the system board for the driver electronics 16 is configured to drive the light source 12, as well as the thermal management system 14. By utilizing the same system board for both the LED power supply 24 and the synthetic jet power supply 26, the size of the lighting system 10 may be advantageously minimized. In an alternate embodiment, the LED power supply 24 and the synthetic jet power supply 26 may each be distributed on independent boards.
Referring now to
In one embodiment, the housing structure 32 includes a cage 34, having air slots 36 there through. The cage 34 is configured to protect the electronics board having the driver electronics 16 disposed thereon. The housing structure 32 further includes a thermal management system housing 38 to protect the components of the thermal management system 14. The thermal management system housing 38 many include air slots 39. In accordance with one embodiment, the thermal management system housing 38 is shaped such that air ports 22 allow ambient air to flow in and out of the lighting system 10 by virtue of synthetic jets in the thermal management system 14, as described further below. Further, the housing structure 32 includes a faceplate 40 configured to support and protect the light source 12. As will be described and illustrated in
Turning now to
As previously described, the driver electronics 16 which are housed within the cage 34 include a number of integrated circuit components 52 mounted on a single board, such as a printed circuit board (PCB) 54. As will be appreciated, the PCB 54 having components mounted thereto, such as the integrated circuit components 52, forms a printed circuit assembly (PCA). Conveniently, the PCB 54 is sized and shaped to fit within the protective cage 34. Further, the PCB 54 includes through-holes 56 configured to receive the screws 44 such that the driver electronics 16, the thermal management system housing 38, and the cage 34 are mechanically coupled together. In accordance with the illustrated embodiment, all of the electronics configured to provide power for the light source 12, as well as the thermal management system 14 are contained on a single PCB 54, which is positioned above the thermal management system 14 and light source 12. Thus, in accordance with the present design, the light source 12 and the thermal management system 14 share the same input power.
In the illustrated embodiment, the thermal management system 14 includes a heat sink 20 having a number of fins 58 coupled to a base 60 via screws 62. As will be appreciated, the heat sink 20 provides a heat-conducting path for the heat produced by the LEDs 42 to be dissipated. The base 60 of the heat sink 20 is arranged to rest against the backside of the light source 12, such that heat from the LEDs 42 may be transferred to the base 60 of the heat sink 20. The fins 58 extend perpendicularly from the base 60, and are arranged to run parallel to one another.
The thermal management system 14 further includes a number of synthetic jet devices 18 which are arranged adjacent to the fins 58 of the heat sink 20. As will be appreciated, each synthetic jet device 18 is configured to provide a synthetic jet flow across the faceplate 40 and between the fins 58 to provide further cooling of the LEDs 48. Each synthetic jet device 18 includes a diaphragm 64 which is configured to be driven by the synthetic jet power supply 26 such that the diaphragm 64 moves rapidly back and forth within a hollow frame 66 to create an air jet through an opening in the frame 66 which will be directed through the gaps between the fins 58 of the heat sink 20.
As will be described in greater detail with regard to
The thermal management system 14 and the unidirectional airflow created by these synthetic jet devices 18 will be described further below with respect to
Referring now to
As will be appreciated, synthetic jets, such as the synthetic jet devices 18, are zero-net-massflow devices that include a cavity or volume of air enclosed by a flexible structure and a small orifice through which air can pass. The structure is induced to deform in a periodic manner causing a corresponding suction and expulsion of the air through the orifice. The synthetic jet device 18 imparts a net positive momentum to its external fluid, here ambient air. During each cycle, this momentum is manifested as a self-convecting vortex dipole that emanates away from the jet orifice. The vortex dipole then impinges on the surface to be cooled, here the underlying light source 12, disturbing the boundary layer and convecting the heat away from its source. Over steady state conditions, this impingement mechanism develops circulation patterns near the heated component and facilitates mixing between the hot air and ambient fluid.
In accordance with one embodiment, each synthetic jet devices 18 has two piezoelectric disks, excited out of phase and separated by a thin compliant wall with an orifice. This particular design has demonstrated substantial cooling enhancement, during testing. It is important to note that the synthetic jet operating conditions should be chosen to be practical within lighting applications. The piezoelectric components are similar to piezoelectric buzzer elements. The cooling performance and operating characteristics of the synthetic jet device 18 are due to the interaction between several physical domains including electromechanical coupling in the piezoelectric material used for actuation, structural dynamics for the mechanical response of the flexible disks to the piezoelectric actuation, and fluid dynamics and heat transfer for the jet of air flow 70. Sophisticated finite element (FE) and computational fluid dynamics (CFD) software programs are often used to simulate the coupled physics for synthetic jet design and optimization.
The package that holds the synthetic jet device 18 within the lighting system 10 should orient the synthetic jet devices 18 for maximum cooling effectiveness without mechanically constraining the motion of the synthetic jet. Advantageously, the synthetic jet devices 18 are secured within the lighting system 10 utilizing contact point attachment techniques. As will be more clearly illustrated with reference to
Referring now to
Once the synthetic jet devices 18 are positioned within the base slots 76, the bridge 68 may be snapped into a slot 78 in the housing 38. As will be appreciated, the bridge 68 includes a snapping mechanism (not illustrated) to allow the bridge to be mechanically coupled to the housing 38. The bridge 68 includes a number of bridge slots 80. Each bridge slot 80 is tapered and positioned to engage a synthetic jet device 18 at a third contact point 72. Accordingly, the bridge 68 provides a locking mechanism to securely hold each synthetic jet device 18 within the lighting system 10, such that vibration during actuation, or other movement of the lighting system 10 will not loosen the synthetic jet devices 18. Advantageously, the bridge 68 is a single structure utilized to hold the entire set of synthetic jet devices 68 in place. Using a single piece of material for the bridge 68 provides a simple, repeatable, robust, easily manufacturable and cost effective way of securing the synthetic jet devices 18 to the base bracket 74. Further, by utilizing a contact point attachment technique, as described herein, provides improved cooling efficiency, without requiring additional driving power and without significant increase in noise.
Additionally, a soft gel such as silicone (not shown) may be applied to each of the three contact points 72 to reduce vibrational noise and to further affix each synthetic jet device 18 within the lighting system 10, such that the synthetic jet devices 18 do not rotate within the slots 76 and 80. Further, by using a mounting gel in conjunction with the slotted base bracket 74 and slotted bridge 68, the required holding force may be reduced.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. Further details regarding the driver electronics and the light source may be found in U.S. patent application Ser. No. 12/711,000, entitled LIGHTING SYSTEM WITH THERMAL MANAGEMENT SYSTEM, which was filed on Feb. 23, 2010 and is assigned to General Electric Company, and is hereby incorporated by reference herein. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The present application is a continuation of, and claims priority to, U.S. patent application Ser. No. 12/908,948, filed Oct. 21, 2010, the disclosure of which is incorporated herein by reference.
This invention was made with Government support under contract number DE-FC26-08NT01579 awarded by The United States Department of Energy. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5758823 | Glezer et al. | Jun 1998 | A |
6109222 | Glezer et al. | Aug 2000 | A |
6247525 | Smith et al. | Jun 2001 | B1 |
6412732 | Amitay et al. | Jul 2002 | B1 |
6588497 | Glezer et al. | Jul 2003 | B1 |
6644598 | Glezer et al. | Nov 2003 | B2 |
7144140 | Sun et al. | Dec 2006 | B2 |
7204615 | Arik et al. | Apr 2007 | B2 |
7252140 | Glezer et al. | Aug 2007 | B2 |
7483770 | Meinders et al. | Jan 2009 | B2 |
7543961 | Arik et al. | Jun 2009 | B2 |
7556406 | Petroski et al. | Jul 2009 | B2 |
7606029 | Mahalingam et al. | Oct 2009 | B2 |
7607470 | Glezer et al. | Oct 2009 | B2 |
20050174780 | Park | Aug 2005 | A1 |
20060060331 | Glezer et al. | Mar 2006 | A1 |
20060185822 | Glezer et al. | Aug 2006 | A1 |
20060196638 | Glezer et al. | Sep 2006 | A1 |
20070023169 | Mahalingam et al. | Feb 2007 | A1 |
20070081027 | Beltran et al. | Apr 2007 | A1 |
20070095987 | Glezer et al. | May 2007 | A1 |
20070096118 | Mahalingam et al. | May 2007 | A1 |
20070119573 | Mahalingam et al. | May 2007 | A1 |
20070139938 | Petroski et al. | Jun 2007 | A1 |
20070141453 | Mahalingam et al. | Jun 2007 | A1 |
20070267976 | Bohler et al. | Nov 2007 | A1 |
20070272393 | Reichenbach et al. | Nov 2007 | A1 |
20080006393 | Grimm | Jan 2008 | A1 |
20080009187 | Grimm et al. | Jan 2008 | A1 |
20080043061 | Glezer et al. | Feb 2008 | A1 |
20080062644 | Petroski | Mar 2008 | A1 |
20080151541 | Heffington et al. | Jun 2008 | A1 |
20080219007 | Heffington et al. | Sep 2008 | A1 |
20080295997 | Heffington et al. | Dec 2008 | A1 |
20090001372 | Arik et al. | Jan 2009 | A1 |
20090031475 | Ochoa et al. | Feb 2009 | A1 |
20090084866 | Grimm et al. | Apr 2009 | A1 |
20090109625 | Booth | Apr 2009 | A1 |
20090141065 | Darbin et al. | Jun 2009 | A1 |
20090168343 | Aarts et al. | Jul 2009 | A1 |
20100012301 | Aarts | Jan 2010 | A1 |
20100014839 | Benoy et al. | Jan 2010 | A1 |
20100018675 | Aarts et al. | Jan 2010 | A1 |
20100019690 | Libohova et al. | Jan 2010 | A1 |
20100033071 | Heffington et al. | Feb 2010 | A1 |
20100039012 | Grimm | Feb 2010 | A1 |
20100124058 | Miller | May 2010 | A1 |
20110089830 | Pickard et al. | Apr 2011 | A1 |
20110162823 | Sharma et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
102009020817 | Nov 2009 | DE |
1040736 | Feb 2007 | EP |
1975505 | Oct 2008 | EP |
2008048493 | Apr 2008 | WO |
2008152560 | Dec 2008 | WO |
2009040703 | Apr 2009 | WO |
2009072046 | Jun 2009 | WO |
2010004469 | Jan 2010 | WO |
2010010495 | Jan 2010 | WO |
Entry |
---|
Search Report and Written Opinion from PCT Application No. PCT/US2011/045460 dated Feb. 6, 2012. |
Number | Date | Country | |
---|---|---|---|
20140071698 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12908948 | Oct 2010 | US |
Child | 14082622 | US |