The application discloses improvements to lighting equipment and systems.
One aspect of the invention relates to improvements in the manner in which lamps are accommodated in lighting fixtures.
The light source illustrated is incandescent, and comprises a filament 90F supplied with power via two conductors 90G and 90H. Dashed line 90E indicates the lamp's envelope and, in this Figure, is attached to a lamp “base” 90B that mounts two electrical contacts 81 and 82 that form the electrical interface between the conductors 90G and 90H of lamp 90 and power.
These lamp-side electrical contacts 81 and 82 are illustrated as capable of coming into an electrically conducting relationship with contacts 61 and 62, which can be mounted in a common lamp “socket” 50 on the supply side of the interface. (In some embodiments, as illustrated here, contacts are adjacent in the same base and socket, while in others, mating contact pairs are located, for example, at opposite ends of a tubular envelope.)
In this simple representation, the supply-side contacts 61 and 62 are shown connected with the electrical power source 17. An additional set of contacts 31 and 32 that mate with contacts 25 and 26 are illustrated and may represent the contacts of a connector pair, for example, at the end of a fixture's power lead. There can also be additional components for functions that can include over-current protection/power distribution; power control/dimming; and/or (in the case of gas discharge sources) power conditioning and starting.
Most lighting fixtures are capable of accepting any one of a plurality of different available lamp variants. In the case of incandescent sources, lamps may differ in one or more of several characteristics, including in their design operating voltage (for example, for use on different local voltages); in wattage; and/or in design life at a given wattage and voltage combination (for example, several hundred hours for applications where output is desired; or a thousand hours or more where longer life and fewer lamp changes are the priority).
Such lamp variants generally share the same envelope design, light center, and base design to assure their physical and optical interchangeability in the same fixture. The manufacturer relies upon the user to employ a lamp suitable for the application.
In some cases, where different lamps might be stocked and used by a given facility or vendor and their characteristics differ sufficiently that the accidental insertion of the “wrong” lamp variant or its connection to the “wrong” input power could result in damage to the lamp and/or to the fixture, provision may sometimes be made to reduce the likelihood of such errors.
In one example, the Source Four ellipsoidial from Electronic Theatre Controls of Middleton, Wis. (as is generally described in U.S. Pat. Nos. 5,446,637 and 5,544,027) is available with a range of lamp variants include not only the previously-described variations in line voltage, wattage, and design operating life, but also in a half-wave variant that is used with the “multiplexing” system described in U.S. Pat. No. 5,323,088. (The half-wave lamp for a 120-volt system is a 77-volt variant, but it will be understood that the actual lamp design voltage for other than 120-volt power systems will differ.) The direct connection of a half-wave lamp to normal line voltage will result in its rapid failure. The “dimmer doubler” unit (identified as 3B in the '088 patent) being separately packaged, the probability of so connecting a fixture with a half-wave lamp are reduced by using a different electrical power connector on all half-wave portions of the system; one incompatible with the various connector types used for line-voltage applications. Like most “lekos”/ellipsoidials, the Source Four fixture uses a “lamp cap” to which both the lamp socket and the fixture power lead are permanently attached. (The lamp cap is identified as “burner assembly 23” in the '637 patent, the socket is 77, and the power lead is 72.) Therefore, the half-wave system requires use of a lamp cap identical to the line-voltage version, except that its power lead is terminated in such an incompatible connector. The same connector is employed on the outputs of the “dimmer doubler”, and is required for the intermediate extension cables needed when the two fixtures supplied from a common “dimmer doubler” are not immediately adjacent.
While reducing the likelihood of an accidental connection of a fixture with a half-wave lamp directly to line voltage, this approach has several disadvantages. Because field exchange of connectors on the same power lead is not practical, separate lamp caps with different power connectors are required if the same fixture is to be used in both half-wave and line-voltage modes, resulting in the need to stock additional lamp caps at significant cost, as well as is the need to physically exchange lamp caps (and not just lamps) to convert the same fixture between the two modes. The separate “dimmer doubler” unit is also required, as are specialized extension cables, should the two fixtures sharing a “dimmer doubler” not be (or remain) physically adjacent.
Also, because the lamp variants in this system are physically interchangeable, nothing prevents the accidental insertion of a half-wave lamp (e.g., lamp 91) in the socket (e.g., socket 50A) of a line-voltage lamp cap, which will generally only be discovered when application of line voltage destroys such a lamp.
The same ETC Source Four fixture design was also upgraded after its introduction to accept a 750-watt lamp, in addition to the 575-watt lamp that had previously represented the fixture's upper wattage limit. To prevent use of the 750-watt lamp in older fixtures, the 750-watt version has a lamp cap whose lamp socket, while otherwise similar to that for the 575-watt fixture, incorporates a recess that will accommodate an additional, non-conducting, pin that projects from the base of the 750-watt lamp. The 575-watt lamp socket, lacking such a recess, will not accept a 750-watt lamp.
Beyond the issues that attend the need for such lamp variants in fixtures, can also be those of employing lamps operating on very different principles in the same fixture; for example, to employ at least one incandescent source, as well as at least one gas discharge source, for reasons that can include differences in lamp life, replacement cost, power efficiency, color rendering, and/or for matching color temperature with other fixtures having the same type of source.
Even were lamps of these different types to be physically and optically interchangeable, their electrical requirements are generally very different. As in the half-wave example, the use of the “wrong” lamp (for example, an incandescent lamp on the igniter and ballast for a gas discharge source) is undesirable; yet minimizing the variations in a fixture necessary to accommodate different source types is very desirable.
Refer now to
It will be seen that, when lamp 93 is employed, filament 93F will appear, via lamp base contacts 81D and 82D, between socket contacts 61D and 62D. When lamp 94 is substituted in the same socket 50D, its filament 94F will appear, via lamp base contacts 81E and 82E, in an electrical circuit between socket contacts 61D and 63D.
Therefore, while lamps 93 and 94 may be made optically and mechanically interchangeable, the insertion of one or the other lamp results in different electrical circuiting. Such different electrical circuiting can be used to protect each lamp, if not to provide for its connection to the appropriate power.
In any of the embodiments herein and in others, many techniques can be used to protect lamp variants and/or to assure the “correct” supply of power, including variations in contact size, shape, orientation, and number, and in features of the lamp base and socket configuration. In the case of a design like that disclosed in design Pat. D477,885S, different contacts can be located at different radiuses from the lamp's central axis and/or in different planes perpendicular to it. (While
The additional contact(s) can be wired to the appropriate poles of a different power connector, such that a circuit will result only when the appropriate lamp is connected with the appropriate power.
Contacts 61E and 62E of socket 50E are wired to “stage-pin” connector 30A. Contacts 61F and 63F of socket 50F are wired to “twist-lock” connector 30B. Unlike the prior art approach of
In
In
In these examples, it will be understood that an electrical circuit will result only when a power lead having the appropriate power connector is used with an appropriate lamp—for example, when a line-voltage power lead is used with a line-voltage lamp.
The techniques disclosed can be employed with many different lamp variants, including, but not limited to, half-wave variants. As will be seen, they can be employed with lamps of different types.
The Figures following include some of the techniques that permit half-wave lamp variants to be used without requiring either specialized “dimmer-doublers” or connectors.
In
It will be understood that the reversing function can be provided by means other than a physical switch. For example, if a power inlet connector similar in principle to inlet connector 36 of
Refer now to
A semiconductor power control means at or near the fixture providing selectable full-wave and half-wave operation can also be used in intensity control.
The mode(s) of operation of such a semiconductor power control means in intensity control can be one or more of many and can be varied.
For example, the use of known “skipped half-cycle” techniques requires no significant increase in either parts cost or thermal losses, providing a measure of intensity control that can be suitable in some applications.
Thyristors can be used with an inductor for phase-control. Field-effect devices/IGBTs can be operated in linear, controlled-transition, and/or PWM modes.
It will be understood that the mode of operation of such a semiconductor power control means can be made responsive to the lamp variant and/or to the desired intensity relative to the supply voltage.
A common semiconductor power control means can be used with provisions to add or exchange the additional components required for intensity control, including drive electronics, inductors, and other additional components, and/or additional heat sink or heat dissipation provisions.
While the circuiting of a fixture can be changed as a consequence of the use of different circuit paths at the electrical interface to the lamp, such is hardly the only method of identifying lamp variants and controlling the power applied. Additional contacts on or physical or other features of the lamp can be used to identify lamp variants—for example, feature 93N is detected by sensor 75S when lamp 93 is inserted in socket 50I. The very differences between lamp variants that result in their differing power requirements can produce detectable differences in their response (for example, impedance/current demands) that can be non-destructively tested for and operation adjusted accordingly.
In any of these or other embodiments, the semiconductor power control means and/or control means can be packaged in one or more readily replaceable modules(s).
In any of these or other embodiments, the semiconductor power control means could be packaged in or insertable in the fixture; separately from the fixture in, for example, an enclosure installed in-line in an attached or a removable power lead; or packaged in an independent enclosure.
Where prior Figures make changes on the supply side of the lamp interface to change half-wave polarity,
Diode 71I may be made integral with the lamp. As previously described, one or more semiconductor power control devices can be used in lieu of a diode(s). In lamp designs like that illustrated in U.S. D477,885S, rotation of the bulb about its central axis between one and the other of two “locked” positions/orientations (in addition to at least one “insertion” position/orientation) can produce diode reversal Such lamp designs can include a portion external to the fixture housing operating at substantially lower temperatures than portions within the fixture housing. Diode 71I can be located at this exterior portion, if not provided with a heat sink there.
In the “multiplexed” system as has been described, a given half-waved lamp filament is coupled to the alternating-current supply only during half-cycles of one polarity. It is, therefore, necessary that the lamp loads be divided/assigned between the two polarities, to make efficient use of dimmer and circuit and to achieve the object of separate control of lamp intensities on the same dimmer output.
It is further necessary that the control electronics of the dimmer supplying such lamps and the lighting controller sending desired intensity values to that dimmer both be re-configured to provide for separate control of the two “sides”/polarities of the dimmer's output.
At present, both the assignment of lamps to one or the other “side”/polarity and the re-configuration for “multiplexed” operation require the intervention of the user.
Both such re-configuration and the assignment of half-wave bulbs to one or the other “side”/polarity can be simplified, if not made automatic.
“Half-waved” lamp filaments conduct only in half-cycles of one polarity. Therefore, if only a single such lamp is connected to a dimmer, continuity will be “seen” through a half-waved filaments in only half-cycles of one polarity, where one or more line-voltage filament will conduct in both. When multiple half-waved filaments are connected via diodes in both polarities (i.e., to both “sides” of the dimmer), other methods of detection can be employed. The impedance and/or the current demands of the connected lamp load can be determined, using, for example, a sensor at the dimmer power stage level or one shared by multiple dimmer power stages. Differences between the impedance/current demands on either “side” of the dimmer power stage can be sensed or inferred to detect the presence of “multiplexed” lamps. For example, if different total half-waved filament wattages are connected to the two “sides”, the difference can be detected and “multiplexed” operation deduced. Regardless of the relative wattage “balance” of connected half-waved lamps between the two “sides” of a dimmer, the impedance of a lamp filament changes dramatically between its “cold” state and its energized, “warm” state, such that half-waved lamps can be detected by applying power differently to half-cycles of different polarity. If half-waved lamps are attached, a detectable difference can be created in load impedance/current demands by “cooling” filaments on one side and “warming” those on the other. If such differences appear, “multiplexed” operation can be deduced. If one or more line-voltage lamps are connected, no significant difference in impedance/current demand will be apparent between the lamp load in two nearby half-cycles of opposite polarity. Upon detection of half-waved (or line-voltage) lamps on the dimmer output, the corresponding configuration adjustments by both dimmer and controller can be made automatic.
The insertion and/or the polarity selection of a diode in series with a lamp can also be made automatic, either as a strictly local operation or in cooperation with other components of the lighting system.
The assignment of “multiplexed” fixtures to one or the other polarity can be made by the user at the fixture, for example by the use of a mechanical switch, a mode selection, or changing lamp orientation.
It is also possible to make such assignment automatic and/or remotely modifiable. For example, the current demands of an energized lamp load on a circuit will typically result in a voltage drop as a result of losses in cable and dimmer chokes, relative to the same lamp load's un-energized state. By connecting a half-waved lamp to first one and then to the other polarity of half-cycles, it can be determined from the resulting relative voltage drop whether another such half-waved lamp is also present on the same circuit, and if so, on which polarity, and the other polarity selected. (As in collision sensing digital addressing schemes, differing time bases can be used in sampling.)
Polarity selection can be made or altered remotely.
For example, the applicant's U.S. Pat. Nos. 6,211,627 B1 and 6,469,457 B2 disclose methods by which values can be encoded in dimmer outputs, for example, by relative variations in average power passed in different half-cycles. Such techniques can be used to signal means associated with the fixtures (in only one example, control means 75 of
The disclosed detection and polarity-setting techniques can be used whether the device(s) “half-waving” lamps are packaged with or independently of the fixture.
As earlier described, there is also frequently the desire, if not the need, to operate not just variants of lamps of the same type, but lamps of completely different types (for example, both incandescent and gas-discharge lamps) in the same fixture, although their power requirements and the auxiliary equipment that they require can be very different and often incompatible.
Any of the techniques of the present invention can be employed to achieve this object.
Refer now to
Therefore, either lamp type can be inserted in the same socket, but different circuiting results.
The additional components/auxiliary equipment in the circuit path for each lamp type, as well as the input power connection, can differ. In the illustrated embodiment, for example, incandescent lamp 93M is supplied with line voltage via 41M and 42M from a typical phase-to-neutral connection between phase 17Z and neutral 17N of source 17. However, if gas-discharge lamp 95 is inserted in socket 50M, it will be supplied via 76C and 76D from a ballast and igniter 76 which, in turn, is supplied a higher input voltage by a phase-to-phase connection via 76A and 76B between phase 17Y and 17Z.
Separate contacts are illustrated here for the two lamp types. It will be understood that some contacts can be shared between different lamp types. It will also be understood that additional contacts or other features may also be provided for variants within lamp types, such as between line-voltage and half-wave incandescent lamps.
In
Referring now to
In
Where
In every illustrated and in other embodiments, the lamp or an adapter or carrier used with it can incorporate one or more feature that changes circuiting and/or changes the state of a supply-side sensor, resulting in the protection of the lamp, if not the application of the appropriate power to it. Alternatively, the differing characteristics of different lamp types and variants permit the use of techniques that apply power to identify the type of lamp (if not the variant within that type) without applying potentially destructive voltages and/or currents.
The techniques employed to achieve the benefits of the invention should not be understood as limited except by the claims.
The example employs a variation in the design of base and socket to limit the orientations in which a lamp can be inserted.
Lamp base 50P is illustrated with five contact wells, for contacts including 61P, 62P, 65P, and 66P. It will be seen from examination of the Figures that lamp 95P (which is shown from two sets of angles rotated 90 degrees), when inserted in socket 50P, will mate pins/contacts 85P and 86P only with socket contacts 65P and 66P. In the other hand, the pins/contacts 81P and 82P of lamp 93P will mate only with socket contacts 61P and 62P. Thus, lamps 93P and 95P will be circuited separately as in, for example,
As illustrated, either lamp can be inserted in two possible orientations, each rotated 180 degrees from the other. This might provide, for example, the diode reversal of
Where prior Figures have illustrated/lamps having a single, fixed power requirement,
In
Thus, lamp 96 could be operated on at least two very different power services.
In most fixtures, the electrical path between the lamp socket and the power source is not interrupted unless the fixture is physically disconnected from the power source. Therefore, there is frequently nothing, save caution, that prevents the user from handling the lamp (whether in trouble-shooting and/or replacing it) while still connected to an energized circuit. Such work is frequently performed with both the fixture and the user at some distance above the ground and/or in other potentially hazardous circumstances. Energizing an exposed lamp produces a dazzling light and a rapid increase in lamp envelope surface temperature. There is the possibility of electrical shock. Therefore, it is always desirable (if seldom provided), that the lamp be de-energized for lamp changes and trouble-shooting.
Fixtures with gas discharge sources can present additional hazards from high igniter voltages, UV radiation, and potentially explosive pressures. Many have incorporated interlock switches in their housings, which interrupt lamp power when opened for access to the bulb, but such switches can generally be defeated and can themselves become a source of problems when they cease to close reliably. Most gas discharge and some incandescent fixtures include power switches, but there is, of course, no assurance that the user will turn the fixture “off”. Such switches can themselves become sources of failure, and, in normal use, might not be turned “on” when used, requiring trouble-shooting and correction later.
In the context of both prior and subsequent Figures, embodiments are proposed in which a semiconductor power control means is used to limit the maximum power applied to a lamp to the region of its design voltage, which is substantially less than the input voltage supplied. Many techniques for limiting the power to the lamp are possible including, but not limited to, pulse-width-modulation and “phase control” dimmers that pass either equal or unequal portions in different half cycles.
Power and Data Distribution in Lighting Systems
It has long been the case that different fixtures (and other devices) in the same lighting system can have substantially different input power requirements, heretofore generally dictating the need for multiple, essentially independent, power distribution and cabling systems, with a variety of important disadvantages.
Refer now to
In traditional practice, virtually all of what are now called “conventional” (non-automated) lighting fixtures (e.g., PAR, fresnel, leko, striplight) in most entertainment applications have employed incandescent lamps, operating at the locally-available phase-to-neutral line voltage (120 volts in the United States). They require a distribution system in which 2-wire circuits (plus grounds) connect dimmer racks or packs (if intensity control is desired) with the fixtures. In many temporary and portable applications, multi-circuit multi-cables are used. In common practice, the multi-cable is often a 19-pin “Socopex” connector (as produced by several manufacturers) generally terminating 14-conductor 12-gauge cable and used for six circuits of 2400-watt capacity sharing grounds via the 13th and 14th conductors.
In the case of both multi-cables and dimmers, the industry has largely standardized on a 20A/2400-watt capacity, in large part, to accommodate those fixtures (notably fresnels) having a single 2000-watt bulb. In fact, most fixtures are of 1000 watts or less, and the trend has been downward with the widespread adoption of fixtures having more efficient compact-filament 575-watt lamps. Although multiple such fixtures can be combined on the same dimmer and cable circuit, there can be limits to such combination. The desired artistic effect and/or the physical distribution of fixtures in the lighting system—as well as the desire to preserve flexibility for future changes—can limit the ability to combine fixtures to make efficient use of the capacity of dimmer and/or cable. In one example, a position with twenty-four 575-watt fixtures could, theoretically, be supplied by a single such six-circuit multi-cable, but the need for separate control of the fixtures in more than just six groups and the added complexity of using “twofers” and “jumpers” to combine loads at the position (and the resulting loss of flexibility in changing such combinations later), in practice, often requires many more circuits, in some cases, as many as four multi-cables, with a single 575-watt load on each 2400 watt capacity circuit (if not also an additional multi-cable for spare circuits for additions and/or replacements). At the dimmer rack, the many circuits in those multi-cables can often be load-patched down to a smaller number of dimmers, but the result will still frequently be that many dimmers will be used for only a portion of their capacity.
Varying the average power supplied to fixtures with incandescent sources varies their intensity non-mechanically. Changing other beam parameters requires mechanisms at the fixture. There is a long history of the use of remote control beam modifying mechanisms. Such remotely controlled mechanisms require power for both actuators and local electronics, as well as the distribution to and around the fixture locations of control values corresponding to the desired parameter adjustments. Use of such accessories (e.g., color changer 880 on fixture 875) has, therefore, required the addition of manufacturer-specific “power supplies” (e.g., 881), which typically accept both an un-dimmed line voltage circuit (via 881A) and a DMX512-formatted control input (from 172B), and that include output connectors carrying both low voltage power and control data, which are connected with such accessories using small-gauge jumper cables (e.g., 882) equipped with compatible connectors (often the 4-pin “XLR”).
Of those so-called “automated” fixtures (e.g., 885) (as first generally described in U.S. Pat. No. 3,845,351) that employ gas discharge sources, many are configured, in the interests of both efficient cabling and international operation, to accept input voltages in excess of 200 volts which, in countries with lower available line voltage, is obtained by a phase-to-phase, rather than phase-to-neutral connection to the local alternating current supply. While certain firms have assembled specialized cabling and distribution systems for their automated fixtures, many users have effectively standardized on the use of single-circuit cables with three-pole twist-lock connectors (typically the NEMA L6-20 or L6-15 configuration) and of the same 19-pin “Soco” cable with all twelve un-earthed pins connected to phases (see Table A below), adapted to the same twist-lock connector (e.g., 155A) by “fan-outs” (e.g., 154).
Although physically identical multi-cable is used for both 120-volt “conventional” and 208-volt “automated” fixtures (e.g., multi-cables 141 and 151), even when both fixtures are at the same location, separate multi-cables are generally required for each function, because of the complexities of mixing circuits with both voltages in varying configurations and quantities in the same cable and the consequences of the accidental application of 208 volts to a conventional fixture's 120-volt bulb.
The result is the requirement for two separate distribution systems, including separate 120-volt dimmer and 208-volt distribution units; separate multi-circuit cables; and different single-circuit “break-outs” and extension cables, at an increase in the cost to acquire, to prepare, to transport, and to install this quantity of equipment.
In one example, ten “conventional” fixtures and ten “automated” fixtures are used at the same position. Because of the difficulties and risks of mixing 120-volt and 208-volt circuits in the same multi-cable, a minimum of two multi-cables will be required (one for “conventionals” connected to dimmers and one for the “automated” fixtures connected to 208-volt distribution). As has been seen, the “conventionals” may require more than one multi-cable to provide the required degree of control and flexibility.
The above example is typical when the “automated” fixtures are “stand-alone” units that contain onboard power supplies for actuators and electronics; an arc power supply or a local dimmer for the light source; and that accept an input with control values directly. Certain fixtures have been designed to rely on an external unit similar in principle to the “power supplies” used with conventional fixture accessories; one that provides low-voltage power and data distribution (if not some control functions) to more than one fixture, and which requires its own un-dimmed power source, input data, and specialized power and data jumpers between it and the fixtures.
In addition, in many portable applications, fixtures are supported by temporary structures, often trusses, that are suspended from chain motors (e.g., 895). Such chain motors typically require a three-phase supply rather than the two phases employed by automated fixtures and by most other gas discharge sources. Hence, such chain motors require yet another, independent, cabling and distribution system, even though they will generally be operated only for the few minutes that the chain motors are in operation.
“Automated” fixtures (like remotely-controlled accessories for conventional fixtures) also require the distribution of control data to and around the fixture positions. Certain proprietary systems excepted, both “automated” fixtures and remotely controlled accessories for conventional fixtures have generally been configured to accept their control data via DMX512, an RS-485-based transmission protocol for 512 8-bit values (plus an additional preamble byte) originally adopted for the limited purpose of conveying dimmer values between a console and dimmers.
“Automated” fixtures each consume a large number of such values for their various adjustable parameters and a large lighting system may require the distribution of more than one discrete set or “universe” of DMX512 values to the fixture positions. Most such distribution is performed with small-diameter shielded cables (e.g., TMB Associates ProFlex) terminated in 3-pin or 5-pin XLR connectors (as opposed to the 4-pin “XLR” connector typically used for conventional fixture accessories). Various enhancements to DMX512 and higher-capacity methods of data distribution have been proposed, including the use of an Ethernet “backbone” down-converted to multiple DMX512 “universes” and “RDM” a bi-directional variant of DMX512 with several enhancements.
Referring now, in greater detail, to the requirements of chain motors:
In general practice, the chain motor itself contains two contactors. A given contactor's closure sends the motor in one or the other direction. The chain motor is typically supplied with multi-phase (typically three-phase) power. A three-wire control circuit is extended from the motor, in which switch closure between the “common” and one or the other of the remaining two conductors closes one or the other of the two contactors in the chain motor, causing the motor to move chain in one or the other direction. These power and control inputs are either combined in a common multi-connector or in two twist-lock or other connectors (one for power and one for control).
Some chain motors are configured with the contactors located remotely from the motor, such that only three-phase conductors and a ground are required by the motor—in turn, requiring only a single 4-pole twistlock connector.
Providing power and control to the chain motors presently requires its own distribution system, including the specialized multi-cables (or twist-lock cables) that connect each motor with a distribution/contactor unit (e.g., 181D); low-voltage control cables that connect the distribution/contactor unit with a handheld remote control; and power cables (often 30A-50A 4-pole or 5-pole) that connect each of several distribution/contactor units with upstream power distribution unit(s), which, in turn, are connected with the main alternating current supply.
To the various power and control data cables required at a lighting position, will therefore be added this additional system of specialized power and control cables required by the chain motors supporting it.
One aspect of the present invention relates to improvements by which the total power and data cabling and distribution “infrastructure” required by a modern lighting system can be dramatically simplified—permitting a reduction in the amount and variety of equipment needed, in its capital cost, in its shipping cost, and in the time and labor required to prepare and set-up such equipment.
One aspect of the invention relates to powering and controlling chain motors, which, at present, typically requires the above-described separate system.
In reality, chain motor power and control are required for only those brief periods that the chain motors are raising or lowering the loads that they support. The lighting fixtures on the structure supported by the chain motors generally do not require full power during the same periods that the chain motors are in operation.
One aspect of the invention shares common power distribution between the chain motors or other motive actuators and lighting or other loads.
Refer now to
In the illustrated embodiment, unit 201 is packaged in an enclosure designed to be capable of insertion inside a typical truss 400—a feature which can be of value in maintaining a low profile in constricted environments and by permitting the unit to be shipped while installed in such a truss.
As seen in sectional drawings
As seen from the Figures, unit 201 is modular in construction, comprising a backshell 201B that accepts two or more modules, in this case, an input module 201I and an output module 2010, as are both visible, for example, in
One possible input module 201IA illustrated (e.g., in
One possible output module 201OA illustrated (e.g., in
Like prior art chain motor controllers, unit 201 can contain relays or contactors for the previously described remote control of motor operation. As also previously described, in addition to variations in motor connector, there can be at least two electrical alternatives available—one, which is used with motors containing contactors, and another, which is used when the motors do not contain contactors. The design of such relay/contactor packages is well known. The former type typically includes one or more “motor enable” contactors (e.g., 206) that apply and remove power to the motors, plus lower-current relays for direction control of each motor. The latter type will typically include one contactor (or contactor position) for each direction of each motor.
Different output modules can mount different motor connectors. For example, output module 201OA (seen in
A modular design for such a unit allows, as will be seen, not just the field assembly of a chassis/backshell with different modules, but the incorporation of the same modules in other chassis, for example, the double-wide backshell 101BB illustrated in
Like prior art chain motor controllers, unit 201 provides an input connector (here 273) to connect a (typically handheld) remote control pendant.
Like prior art chain motor controllers, unit 201 accepts multi-phase power that is distributed to the chain motors.
Unlike such prior art chain motor controllers, unit 201 shares such multi-phase power with lighting loads.
Input module 201IA employs, for example, the previously-described 19-pin “Soco” multi-cable 151 for power input via inlet connector 253. Multi-cable 151 is typically supplied from a generic 208-volt (phase-to-phase) distribution unit, as is typically employed for “automated” fixtures (although, as will be seen, many other approaches are also possible). As seen in
Certain poles of input connector 253 are also paralleled with the chain motor receptacles 280A-280D, as well as being used to derive power for operation of contactors, relays, and for other functions.
As summarized in Table A below, pins 1, 3, and 5 of the inlet multi-connector 253 can supply one 3-phase motor power circuit (with pins 3 and 5 reversed after paralleling to restore correct phase rotation) and pins 7, 9, and 11 represent another motor power circuit (with pins 9 and 11 reversed for the same reason). When the inlet multi-connector 253 is plugged via multi-cable 151 to a generic 208-volt distribution unit, the result is two 20A 3-phase motor circuits. (As will be understood, the specific phase distribution on the inlet multi-cable will determine the connections required to produce the desired phase configuration for the chain motors or other actuators. As will also be seen, the unit can also be used with 120-volt distribution.) If used only in a 208-volt application, the input poles paralleled to for motor power could just as readily be, for example, poles 1-3 and 4-6.
One application of the illustrated unit is with typical 208-volt distributions. Such distributions are typically used to supply moving lights, which often contain discharge lamps that can be turned on and off by remote control commands via their data input without requiring either manual operations at the fixture or interruption of the AC supply. Therefore, when a unit (or another embodiment) is connected to both motors and to such fixtures on its output side and to a 208-volt distribution on its input side, power is always available to both types of equipment. The chain motors can thus be operated to attach them to the truss; to “float” the truss to a working height to attach fixtures and cable; and then can be “flown” out to ultimate “trim”. During this period, power will also be applied to the moving lights or other loads, which allows them to complete their self-test/calibration routine and which allows the user to check and reset their digital addresses and modes. The user can also “strike” (turn on) their lamps for additional testing purposes while at working height. During the periods during the set-up that the motors are operated, there is no necessity that the lamps be lit, and therefore virtually all of the power is available to the motors. Once at final trim, there is generally no further need for motor power until the “load-out”, and the power available from the input connector is exclusively for the moving lights or other loads.
One benefit of this or another embodiment is the elimination of a separate, dedicated, chain motor distribution system. The only specialized power-level cable required is the cable (e.g., 181A) between the chain motor and unit 201, which will typically be of a short length as unit 201 can be located near the motors. As will be seen, the small-gauge control cable 271 used for motor control can be the same or similar cable used for other purposes. And the same multi-cable 151 and associated 208-volt distribution used to supply power to the moving lights also supplies power to the motors. The result is a substantial reduction in the amount of equipment required and hence in total capital cost, in shop preparation, in shipping size and weight, and in set-up time and labor.
There may be circumstances in which the multi-cable supplying the lighting load is a 120-volt application, and in those circumstances, it is desirable that the unit operate in a 120-volt mode. Such an alternative is the reason for a selection of odd-numbered pins on the multi-cable inlet connector 253, which, as seen in Table A below, also corresponds to the “hots” on such multi-cables/-connectors in 120-volt applications.
When operating in a 120-volt mode with so-called “conventional” fixtures, the input multi-cable supplying the unit will typically be connected to a dimmer rack, which will not necessarily provide either constant power and/or the required phase rotations (although, in theory, both could be provided, in the patching of the rack and the use of non-dims or dimmers as non-dims). Alternatively, during motor operations, the user could plug the multi-cable into a 120-volt distribution with the correct phase relationships. In either case, because the motor circuits and lamp loads are paralleled, energizing the multi-cable will cause the fixtures to light, and the power available to the motors will be reduced by the amount of those lamp loads.
One alternative is to insert additional power contactors (or their equivalent) between the odd-numbered pins of the power input 253 and the outlet 252 to the lamp load. Normally closed, these contactors can be opened when the motors are enabled, temporarily disconnecting the lamp loads, such that those loads are “off” during motor operation, and the motors get the full benefit of the available power. In fact, this function can be provided by the use of double-throw relays or contactors for “motor enable” contactors, with the motors on the normally-open sides and the lamp load connector(s) on the normally-closed sides. In the type used with motors without contactors, each incoming phase can be connected to the common pole of one motor contactor, the normally-closed side of which is connected to the common pole of the second motor contactor, the normally-closed side of which is connected to the lamp load output connector. Energizing either relay to send the connected motors in the selected direction will also interrupt power to the lamp load.
If a separate relay/contactor package is provided to disconnect lamp loads during motor operation, the unit can provide for the insertion of such additional contactor package, by, for example, including the necessary harnesses, which can be plugged through when not in use, or by receptacles with shorting plugs.
The following “Table A” relates the pins of a typical 19-pin input “Soco” multi-cable to the various 120-volt and 208-volt functions, and to one possible set of motor uses. In this one of many possible embodiments, the motor functions are distributed on the odd-numbered pins of the input multi-connector to provide for both 120-volt and 208-volt operation as two 20A three-phase circuits. The table also illustrates that two additional three-phase circuits can be derived from the even-numbered pins in 208-volt mode.
Any embodiment can include such additional features as may be desired, either as standard or as options.
Power indicators are one. A phase-rotation indicator is another. Another feature would sense the presence of power on each of the three poles of the inlet power connector as would be required by a given motor circuit (with or without also examining their phase rotation). Only if power were present on all three of the phase conductors would it be possible for the corresponding contactor(s) to close. Thus, no power would be supplied to a motor unless all three phases were available and opening any upstream switch or breaker that interrupted any one phase would positively assure that all three would be interrupted. Contactors can be used to identify the phases required from the input can connect them appropriately to the motors.
It will be understood that some chain motors are configured for one or two phases and that a unit that shares common input power between both such motor and lighting loads can be produced.
The Figures also illustrate a motor control inlet connector 273 on the Input Module (located there in this embodiment, although it could be located elsewhere).
That motor control inlet connector could well be one of the existing types in use. If, for example, an eight-motor connector is chosen then the user could employ a splitter (whether external or built into the unit) to move control for motors #5-8 where they can be used by a second such 4-motor group.
The motor control connector may or may not be used for other forms of control signal distribution, as will be described below. As the motor control function is required only during those periods when the motors are in motion, therefore, the same control cable used for motor control could also change modes and be employed to distribute lighting or other data when the chain motors are not in use.
Like other chain motor controllers, the unit could supply power suitable for powering a handheld local remote controller via the motor control connector—as well as being capable of plugging to more elaborate controllers.
Other forms of power input can be accepted by such a unit—including by means of interchangeable connectors and/or input modules. Examples include (but are not limited to) the 5-pole twistlocks found in 20A and 30A versions with associated No. 12/5, No. 10/5 or larger cable as are used in portable power distribution systems and in permanent installations like convention centers, and the 4-pole 50A twistlock connector with associated #8/4 or other cable as is used in some present chain motor distribution systems.
In any of these (or other) configurations, benefits include the use of cable and distribution equipment already in inventory.
Where required by electrical code and/or by the use of a power inlet connector/supply of a higher ampacity than the output connector, circuit breakers and/or other branch circuit protection devices (e.g., breaker 204 of
While specific connectors have been shown for both lamp load and motor outputs other single- and/or multi-circuit connectors can be used.
While the advantages of supplying both lamp loads and chain motors from a common unit are described, some advantages attend the use of a unit that supplies only chain motors, but is supplied via a generic multi-connector like the 19-pin Soco or the various twist-locks illustrated, so that generic cabling and distribution equipment can be employed.
In another alternative, a multi-circuit-to-single-circuit-connector adapter (“break-out”) could be wired with motor connectors, which would be supplied by a Soco or other cable connected to a standard 208-volt distribution, the control inputs to each motor being connected with a handheld remote chain motor control pendant by discrete 3-pole connectors and 3-conductor cables (which would also serve for local control of a motor) and/or a multi-motor control cable.
Similarly, a unit could parallel the respective 2-phase and 3-phase output connectors while omitting the contactors and exporting the motor direction control function via a multi-motor multi-cable to another location.
Also, while the use of such a unit has been illustrated in connection with lighting fixtures, other versions and applications are possible. For example, chain motors are used to support video projectors, which themselves require power, frequently multi-phase. A unit with a suitable output power connector(s) could be employed. Another application is sound-reinforcement, where chain motors are used to support clusters of loudspeakers. In this case, the loudspeakers may employ internal power amplifiers such that they, like a moving light or video projector, require AC power. Alternatively, they may require connection to power amplifier outputs at another location—in which case a multi-connector-equipped multi-cable (including, in some cases, the same type of 19-pin Soco) is used. In such applications, relay/contactors can be used to change the mode of the multi-cable from AC power for chain motors to DC speaker outputs. The assignment of AC phases to connector poles may spread around separate circuits/groups of speakers so that accidental connection of AC power to speakers would not cause current to pass through a driver.
Dimming
As has also been described, lighting systems can require the use of large numbers of “conventional” or other fixtures of a wattage substantially less than would make efficient use of the capacity of multi-cables and dimmers. Such systems can also require the use of “moving lights” operated most efficiently at 208 volts, while most “conventional” fixtures require 120 volts.
Another aspect of the invention is designed for use in proximity to the lamp loads, and can be capable of using the same connectors and/or voltages used to supply loads like “automated” lights configured for 208 volts.
Various approaches are possible.
Such a unit 301 can be of a size and form factor similar to that of the previous-described unit 201.
An enclosure can be provided with one or more power inlet connectors.
The power inlet connectors may be of single-phase or multi-phase configuration, providing 120 volts.
The power inlet connector(s) also may be of the configuration typically used to supply 208 volts to moving lights.
In one approach, the dimmers contained in the enclosure can be designed to accept an input voltage typical for a phase-to-neutral connection.
Such a distribution unit can mount one or more single-circuit 120-volt receptacles (e.g., 124A). Such receptacles can be provided with an intermediate electrical interconnection (e.g., 119 and 121) such that the single-circuit 120-volt output connectors or a panel mounting them (e.g., panel 121) can be added to or removed from the same chassis and/or displaced to another location (for example, to another surface of the rack or roadcase mounting the distribution unit).
Such intermediate connections can be adapted with a multi-circuit connector like the “Soco” type to permit the remote location of the 120-volt connector panel and the use of a standard multi-cable between the two.
The risk of bulb damage by accidental connection of a lamp to a distribution circuit while in a 208-volt mode can be addressed by including a protective circuit or feature at the lamp or dimmer that prevents the application of the higher voltage to a lamp load. A variety of alternatives are possible including limiting dimmer output and tripping the circuit breaker on the distribution unit with a “crowbar” function. The dimmer or protective device can signal the over-voltage condition, for example, by repeatedly applying a modest voltage to the lamp load—causing it to “wink” or by communication, for example, over the data link supplying the dimmer unit with desired intensity values. The mode change at the distribution unit can also be made automatic—for example, in response to a command received from the dimmer or system administrator and/or by sensing the presence of the dimmer or a signal produced by it on the power wiring.
Another approach is to employ dimmers designed to accept a power input of in excess of 200 volts, while being capable of regulating their output to within the acceptable voltage range of a lamp load designed for substantially less—such as 120-volt (or half-wave) variants. One advantage is that such dimmers can be supplied from the same distributions and multi-cable as 208-volt moving lights, eliminating the need for separate 120-volt dimmers and cabling. Further, because the available voltage at the dimmer input is well in excess of the lamp design voltage, such a dimmer can regulate its output to voltages in excess of the available phase-to-neutral voltage, readily compensating for line losses (voltage drop) to an extent not possible with conventional dimming schemes, including to voltages in excess of the lamp's design voltage (for example, to 132 volts) for additional light output. Such a dimming approach is also international—allowing fixtures to be used on services either substantially above (200-240 volts) or below (100 volts) the design voltage of a lamp.
Many different electronic approaches are possible.
One such approach limits the maximum phase angle/on-time of a phase-control dimmer to apply an amount of energy to the lamp load comparable to normal 120-volt operation. Where the supply voltage is in excess of the lamp's design voltage (for example, a 120-volt bulb on a 208-volt phase-to-phase connected circuit, the power device(s) can pass up to one entire half-cycle and then “make up” any remaining difference to lamp design voltage by passing a fraction of another half-cycle—or can pass a fraction of both.
Other dimming approaches (for example, PWM) are possible, as is filtration or rectification/filtration of the dimmer output. There are also advantages to controlled-transition dimming in the application, including in reverse-phase control. Such power stages can be configured—and actively re-configured—to change modes to extract the maximum energy from the AC input waveform while minimizing current draw. For example, by operating different power stages in forward and reverse phase control mode so that pairs of power stages are, at most phase angles, not simultaneously in conduction (such pairing preferably further factoring in the relative load on each power stage) current demands can be minimized.
As described above, an embodiment can provide a power inlet connector in the form of the known “L6-20” or another connector type typically used for 208-volt systems.
Embodiments are illustrated that include four or six dimmer power stages. The output of such dimmer power stages can be supplied to single-circuit connectors (such as the illustrated pin and/or other connector type) and/or to a multi-circuit connector such as the “Soco” multi-connector, as is illustrated in
A four-dimmer embodiment is illustrated in
To make the most effective use of such dimmers, the unit could include at least a second power input (e.g., inlet connector 353B), permitting the use of more of the dimmer power stages to a higher total capacity. For example, by transferring two (e.g., 309C and 309D) of the four power stages to the second 20A input, the capacity of the unit can be doubled, for example, allowing all four power stages to supply 1000-watt loads.
There are variety of methods for connecting the power stages in such a unit to either one or more than one power inputs including external twofers; manual switches; a microswitch in the additional inlet connector (like switch 306) that transfers one or more dimmers to the second input when a female connector (e.g., 155B) is inserted into the additional inlet connector and depresses a plunger (e.g., 306P); as well as internal relays or power devices, including those responding to the presence of power on the additional input and/or to the actual loads connected to the dimmer outputs.
Like the previously-illustrated unit supplying chain motors, a variety of both input and output configurations for such a dimming unit are possible.
Such a dimming unit can also provide for a variety of data inputs.
Because it provides an enclosure, a processor, some form of user interface and at least one data input, such a unit can also be inexpensively used as part of the overall data distribution scheme in a lighting system.
For example, the unit (or a specialized module) could accept an Ethernet input and down-convert it to multiple DMX512/“RDM” universes.
At present, digital data is generally distributed as “DMX512” by 3-pin or 5-pin “XLR” connector terminated cables and sometimes (at an intermediate stage) by “data multi-cables” that carry a number of separate such DMX512/RS-485 signals. Alternatively, cables and connectors, including ruggedized shells for standard inserts, are available for carrying higher-bandwidth Ethernet-based signals to locations where they can be used as such and/or down-converted to multiple DMX512 signals.
Preferably, a multi-conductor cable and connector can be employed that will either accommodate an Ethernet signal (with or without power supply for downstream down-converters) or multiple DMX512 signals.
The previously illustrated unit used with chain motors requires a motor control input cable. The same multi-conductor cable used to transmit either Ethernet or multiple DMX512 signals (and preferably both) could also be used for motor control. Separate runs of the same cable type could be used for the two functions, or the “mode” of the same cable could be changed between the functions when motor control is required; or the motor control function could be integrated into the same data stream as lighting control. Therefore, cable 271 could be the same cable type, if not the same cable, as cable 371. Data could be coupled between different units by jumpers (e.g., jumper 277).
Certain fixtures and fixture accessories include actuators and local electronics that, in turn, presently require separate manufacturer-specific, if not product-specific, power supplies that also have data distribution, if not control, functions. Power supply/distribution modules and/or units designed to support the products of multiple manufacturers can be provided—and also include or provide for such features as data distribution and/or dimming.
The presence of a bi-directional communication node in proximity to chain motors or other actuators has additional advantages in providing a ready pathway for the transmission and return of data for various functions. For example, more sophisticated control/feedback for the “trim” of a load lifted by a chain motor relies upon feedback as to motor/load position derived from absolute and/or incremental encoders mounted in the motor. Load cells can define the present weight suspended by the motor. Present chain motor power distribution and control systems do not provide for such feedback. If the basic motor power and control functions are located in or near a unit that also includes a bi-directional communications node that can be used for other (for example, lighting, purposes) then the same node and communications pathway can readily be used for feedback from the motors to another location, such as a master control or display. Similarly, motor control commands can be communicated over the same pathway as may also be used for other functions, like lighting data.
Various Figures illustrate provisions for data input and distribution.
Power supplied to unit 201 is paralleled to a receptacle (like receptacle 252 of various Figures) that supplies the circuits of break-out 154. Those circuits can supply dimmer enclosures (for example, dimmer enclosure 301) and/or fixtures or other loads (for example, automated fixture 885) in any combination. Thus, both the cabling and the distribution equipment required in a lighting system is both simplified and reduced in quantity. Where separate dimmer and distribution racks and separate cabling are presently required to supply “conventional” fixtures, “automated” fixtures, and chain motors, the disclosed system results in a simplified, unified distribution scheme and a single cable type. Because chain motors share power and cabling with lighting equipment, all specialized prior art distribution equipment prior to unit 201 is eliminated. Because “conventional” and “automated” fixtures can be used interchangeably on a common cable and because dimmers are distributed in proximity to fixtures, the quantity of cabling and the complexity of the dimming/distribution scheme are drastically reduced.
Similarly, when a power distribution scheme like the previously-described 4-wire or 5-wire multi-phase system is employed, units 201 and 301 and others can be connected.
Another aspect of the invention is additional and alternative methods for providing temporary power to devices in a lighting system to permit, among other purposes, displaying and setting serial addresses, modes, and other functions.
For more than two decades, entertainment lighting has employed devices including dimmers, “automated” fixtures, and remotely controlled fixture accessories that are responsive to multiplexed communications over a common serial bus. Each such device is provided with a serial address, which permits it to respond to the appropriate desired parameter values within a common serial data stream.
Such devices require a method by which the user can specify the serial address and of displaying for the user the presently selected serial address. It is also desirable that the selected address be preserved when device is powered-down, for example, for transport.
In addition, the device can be capable of various user-selectable “modes”.
In many cases in the early use of such devices, the serial address and mode(s) were determined by a mechanical switch bank with some indicating function—typically thumbwheels and “DIP” switches.
However, for a variety of reasons, many more recent devices have replaced mechanical switches that both retain and display the selected address with electronic displays (e.g., LEDs or LCDs) that perform the display function. They retain the address (and other information, such as modes) internally in non-volatile memory. An undesirable consequence is that the address and such other information cannot be viewed or changed unless and until power is supplied to the device, such that its internal power supplies can energize the necessary display and electronics. Especially in the case of fixtures and fixture accessories, the time during the setup of a lighting system at which the address and mode of a device is often most necessary to determine and change is often prior to the time at which power is provided.
As a result, two approaches are employed:
One is to “pre-address” the fixtures or accessories before arrival at the venue. This requires that at another location each, while removed from its shipping case, be connected to AC power; set to the desired address and mode; and then that both fixture and case be marked with the selected address. The fixtures and accessories are then trucked to the point of use where, despite the fact that all fixtures or accessories of a given model may otherwise be identical, the user must locate each such fixture or accessory and hang it at a specific location, so that the correctly-addressed fixture or accessory is hung in each position. Where the lighting system is being toured from venue-to-venue, each fixture must be returned to the specific roadcase with the corresponding address and location labeling so that the same fixture or accessory can be restored to the correct location at the next venue.
Another approach is to address the fixtures after they have been hung at the set-up. In this case, the user must connect each fixture with a temporary AC supply either by means of a long “cheater” extension cord or by temporarily connecting power to the cabling that will ultimately be used to power the fixtures. The user will then set each fixture's address in turn.
Either approach consumes time and labor, especially of the limited number of more-skilled production electricians or technicians responsible for the system's installation and operation.
One alternative is the previously-described unit 201 that supplies power to both chain motors and lighting fixtures at the same time.
Another alternative would be to assemble an adapter cable that is terminated on one end with a specialized chain motor connector (for example, a 7-pin Soco or 11-pin bayonet or 4-pole twist-lock) and, on the other, with a connector mating with that used on “automated” fixtures or on power supplies for accessories like color scrollers. As most chain motors are typically configured for three phases, the two phases required by many such “automated” fixtures can be obtained and fixtures tested and addressed.
Each of the previously-described approaches can have limitations. Not all applications include chain motors, and, therefore, chain motor distribution of whatever design. Further, most fixture accessories (color changers, for example) are not designed to operate directly from any line voltage, but from lower voltages as supplied by manufacturer-specific power supply units, via specific low-current cables carrying both the lower voltage and control information.
In the present alternative, a device, such as a dimmer, fixture, or fixture accessory includes an input through which low-voltage, low-current power can be accepted.
Such an input can be a relatively low-voltage, low-current input already provided for the unit's normal operation, such as the 4-pin XLR input provided on most color changers.
It can be an existing input normally used for line voltage.
And/or it can be a separate input provided for the purpose.
Such input can take the form of physical contacts or of coupler, such as an inductor.
In any such case, a portable unit, not relying on a substantially continuous connection to a fixed power source, is employed, that can supply at least relatively low current across the connection or coupling to the dimmer or other device.
It will be understood that the power demands of a dimmer, fixture, or accessory, in declining order of current demand, include that of any light source; of any fans and/or electro-mechanical actuator(s); and of the control electronics and displays. Relative to the demands of the first two, those of the control electronics and displays are modest.
Therefore, by connecting or coupling a relatively low-current power supply to the device, sufficient power can be applied to permit the user to interact with it, for functions including checking and changing addresses and modes.
In principle, such a relatively low-current power source could be incorporated in the fixture or accessory in the form of a power-storage means, such as a battery. However, by making the power source external, an economy is achieved, and the user's ability to interact with the fixture or accessory does not rely on the present state of an internal power-storage means.
In one example, a small, hand-held unit terminated in a compatible connector or coupler is used, and provides sufficient power to energize the fixture or accessory control electronics, while being insufficient for extended normal operation.
Importantly, the current demands of the fixture or accessory when connected or coupled to such a temporary power source are limited so as not to overcome the latter with non-essential demand.
In some cases, the point at which the temporary power source is connected will be at a branch in the overall internal power distribution scheme of the fixture or accessory that supplies only relevant control electronics and not high-current components like motor drives and lamps.
In others, the fixture or accessory can be made to sense—from either the input power (for example, its limited voltage) or from some other input or condition, input parameter, or signal provided by the temporary power source, that less than the normal full operating power is available, and limit its operation and current demands appropriately.
Such power could be applied at the device's normal data or power input, or, as the inputs of multiple devices are frequently paralleled by data distribution cables and/or at a shared power supply, power could be applied to multiple devices simultaneously. As data inputs are—or should be—protected against application of excessive voltages, a data input could be used, with the temporary power routed to the appropriate electronics by features prior to (or incorporated with) such protective features.
In other cases, the user could interact with the supplied fixture or accessory such that it enters a mode providing the necessary display and access to relevant parameters such as address and mode, but also inhibits the operation of higher-current components like actuators and lamps.
An additional connector or coupler could be provided specifically as an inlet connector for the temporary power source.
Most such fixtures and other devices also offer only a limited user interface, making for a less efficient address entry and mode display/selection functions. For improved user-interface and, potentially, lower current demands, such a temporary power source may employ or be employed with an interface external to the connected or coupled fixture or accessory with which the user can interact. An external unit that affords a more elaborate and efficient user interface can be used for the address/mode function and connected to the device via the same or a different means as the temporary power.
Where the devices is, for example, an accessory like a color scroller configured to rely upon an external unit, like a “power supply”, for control functions, the portable source of temporary power can provide such functions as are required to display and set addresses and modes.
The portable source of temporary power may provide, or cooperate with another unit providing, test functions, software downloads, and/or other interactions.
However,
Improved user interface 392 can also be provided with unit 390 or can be independently employed with it, connecting with scroller 880 via data input 880Q or coupled by other means/routes.
As illustrated in
Scroller 880 accepts data via input 880R. In this Figure, unit 391, which includes a power source 391B and an optional or cooperating or independent improved user interface 393, plugs to scroller 880 via data input 880R. Data input 880R has feature 880G that protects control electronics 880E from excessive voltages and/or currents from any cause. A path is illustrated, prior to feature 880G, that shunts voltage applied to data input 880R to the power supply rail 880L via protective feature 880J, such that voltages and currents (for example, from device 391) suitable to power control electronics 880E and user interface 880U, are allowed to pass from data input 880Q to the low voltage power supply rails. Diodes 880I and 880K illustrate features that prevent the application of power from the data input 880R to the motor drive 880D, or power from power supply 880V, once energized, to the data input.
Only two of many possible approaches are illustrated in the Figures.
It has been a long-sought object of not just decades but of generations, to create lighting fixtures, suitable and practical for the application, that are capable of efficiently changing beam parameters, most notably “from any color to any color at any speed” under remote control and without undesirable intermediate effects, either visual or audible. Traditional “color changers”, including color wheels, color scrollers, and “semaphores”, allowed for changing filters, but not for mixing any desired color, and not for color-to-color transitions, and have a variety of other aesthetic and practical disadvantages.
During the 1980s, several reasonably effective methods of color-mixing were developed and introduced in the context of automated fixtures. But remotely controlled color-changing and color-mixing for “conventional” fixtures are still approached with accessory devices that are attached to the front end of the fixture where the beam exits.
For many fixture types, there would be no advantage to locating a color-changer or color-mixer internal to the fixture, as the beam there is not substantially smaller. However, in the case of fixture types in which the fixture's optics converge the beam to at least one focal point within the fixture's housing, the reduced size of the beam internally permits a similar reduction in the size of the color filters. In addition to the filter size reduction and its related benefits, the size reduction may also permit the use of different approaches (like a filter wheel or disc) that would not be practical if located at the beam exit.
In such fixtures having at least one internal focal point, an internal color-changer or color-mixer can therefore be made much smaller, much faster, much quieter, and potentially more economical, by virtue of reduced size, different operating principles, and by the reduction or elimination of those components that would be required by a larger and/or by an external device.
Referring to
As illustrated in
By allowing the user to change the color of light by fluidly changing the color of the beam of a single fixture, rather than requiring the user to “dim” between otherwise identical fixtures with fixed “gels” or await the travel of a scroll that may be limited to pre-selected “gel” colors, important practical and aesthetic advantages can be gained.
One of the disadvantages of prior art, external color-changers and color-mixers is their previously-described requirement for shared “power supplies” that convert line voltage to low voltage for actuators and electronics and that distribute incoming control data (if not provide control functions). In addition to their capital cost, such “power supplies” and the specialized cables required to connect them with the color-changer or color-mixer complicate the lighting system and its assembly and operation, as does the requirement to supply them with control data and constant.
It would, therefore, represent a significant advantage to reduce or eliminate the requirement for such “power supplies” and/or for separate power and data distribution.
In an ideal situation, a fixture incorporating remotely controllable color and/or in other beam parameter(s) would require no additional wiring or components over a “conventional” fixture, which requires only a two-wire-plus-earth circuit from a dimmer.
Prior related application, now U.S. Pat. No. 6,211,627 B1, included in its entirety by reference, discloses methods by which this object can be achieved.
As disclosed in '627 patent, power for actuators and electronics can be derived from the same dimmer output used to vary the brightness of the incandescent lamp. It has long been known that certain dimmer power stages will “leak” some power even in an “off” condition. It is also often the case that dimmers are designed to apply a minimum voltage to their connected lamp loads even when the lamp is nominally “off”; a voltage sufficient to warm/reduce the impedance of the filament without its generating light, for purposes of reducing inrush current demands on the dimmer, speeding filament response, and extending lamp life.
Operation of actuators may require additional current that a dimmer in such an “off” condition may not supply. Various techniques are disclosed in the prior related application, including an energy-storage means (e.g., a capacitor) and an increase in the power output from the dimmer that is prevented by a power controller at the lamp end from producing an undesirable increase in light output.
The location of a color-changer or color-mixer at the typical “gel frame” position where the beam exits the fixture housing results in a relatively large beam cross-section and therefore in large filters. Such filters are generally “gels” wound in scrolls for reasons of space and require both time and torque to move. “High-speed” movement is less than instantaneous; tends to produce significant and undesirable audible noise; and accelerates wear.
By contrast, such an internal color-changer or color-mixer can employ small filter panels or discs. The amount of motive power required is dramatically less, and changes can be essentially instantaneous with no penalty in noise or wear. Such a color-changer or color-mixer can derive the energy necessary from a dimmer output. It will be understood that if the lamp is energized (making the color change visible), that, by definition, the dimmer will also supply sufficient power for the change. If, on the other hand, the lamp is not producing significant visible light, then the completion of the execution of any change in color dictated by a change in control values need not, in fact, be completed until sufficient power is also applied to the lamp to generate significant visible light. Therefore, the duration of the color change can be extended, relative to the change in control values, to make better use of limited power. Further, because the thermal mass of a lamp filament results in a time lag in response between the application of power and a corresponding light output, the increase in power supplied by a dimmer when the lamp is next “dimmed up” provides additional power to rapidly perform (or complete) the change in color before the filament generates enough light to see the effect.
The same technique can be employed for other parameters whose mechanisms require relatively little time and energy to actuate.
The prior related application also discloses methods by which control and other values can be “encoded” in the output of a dimmer or other power controller, such that the electronics and the remotely controlled mechanisms associated with a fixture or an accessory can be provided over the power wiring.
It will be understood that control values and/or power can be supplied to a fixture or accessory independently, and that a fixture that employs a local dimmer or a gas discharge source will be provided with a constant source of power.
Although internal color-changers and color-mixers have been used in some “automated” fixtures, importantly, the present invention employs them in a “conventional” fixture. As such, the base fixture can be comparable in size, weight, cost, and reliability to present “conventional” fixtures. In a manner analogous to the use of present outboard color-changers the user can use the color-changing or color-mixing module, at comparable cost, but with vastly superior results.
Such a base fixture will preferably be designed or adapted for the application.
Such a fixture may also incorporate other features, options, and improvements that may also be employed in other fixtures and fixture types.
To be of value, fixtures like ellipsoidials require the ability to provide different beam spreads so as to achieve the desired beam size and do so at different fixture/subject distances or “throws”. The ETC Source Four is typical, with a range from 50 degrees to 5 degrees. As illustrated in
It is a characteristic of the optical systems of the general type illustrated in previous Figures that they extend for some distance beyond the light source and reflector. Either the lens(es) are moved within a housing of fixed length (e.g., “zoom” fixture 435 and prior art automated fixtures), or (as in the case of fixtures like the Source Four and its precursors of the last half-century, the displacement for focal adjustment of a lens barrel (e.g., 432) in which a lens is fixedly mounted, produces a modest variation in the fixture's overall length. In either case, such fixture length is far in excess of that required by some other fixture types, which has an undesirable impact on fixture shipping space requirements (especially in applications in which the fixture is shipped mounted internal to a supporting structure like a truss) as well as complicating the mechanization of such a fixture in azimuth and elevation adjustment.
One example of an application for the disclosed “telescoping” fixture is in trusses and other structures designed to permit shipping fixtures installed. And “telescoping” housings can be used with other fixture types.
For at least a quarter-century, one method of reducing the amount of time and labor required to convert a lighting system from its shipping configuration to its “use” configuration is the “drop-frame” or “pre-rig” truss, in which the fixtures travel mounted and contained within the structure that will support them for use. Upon arrival at the point of use, some operation displaces the intermediate support on which the fixtures are mounted within the truss to move the fixtures generally exterior to the truss structure so that it does not unduly interfere with the fixtures' use. In “conventional” lighting practice, the truss structure is a rigid rectangle in section and the fixtures are mounted on a common support and manually displaced towards the exterior of the truss to reach “use” position. “Automated” fixtures are, however, many times heavier than “conventionals” and the same method is not as practical. One alternative is a specialized truss structure in which individual or mechanized supports displace the fixtures between “shipping” and “use” positions. Another folds up the sides of the truss structure to remove their potential obstructions to fixture use.
In either case, the result is the requirement for a specialized truss structure that is more complex and expensive than traditional, rigid truss structures, and one that requires both time and labor to reconfigure onsite.
Refer now to
The improved fixture housing 450 is designed to be contained within the structure of a truss 400. The housing 450 is supported within the structure of truss 400, here by means of mounting brackets that engage truss members. Brackets like 451A and 451B hook over truss members like 400G and 400H. Brackets like 452A and 452B similarly engage truss members like 400E and 400F. In the illustrated embodiment, the brackets engage truss members so as not to extend beyond the envelope defined by the truss structure, so as not to be impacted in shipping. Both brackets and housing provide ample clearance to the main chords so as not to interfere with the use of those chords for supporting the truss and/or other loads.
The mounting brackets or other mounting method are designed to permit adjustment to varying spacing of truss members and to different truss sizes and types.
As seen in the various Figures, the improved fixture housing contains a fixture head 460, pivotally mounted to yoke arms 461 and 462, which, in turn, are mounted to slides, that permit their extension and retraction (and with them, that of fixture head 460) between a shipping position (illustrated in
Displacement between one and the other position can be manual or mechanized and, in either case, assisted by counter-balancing weights, springs, gas springs, or other means.
The various components need not be enclosed or completely enclosed as has been illustrated.
The illustrated embodiment provides for fixture adjustment in the nominal tilt axis by rotation of the fixture head 460 relative to yoke arms 461 and 462. Yoke arms 461 and 462 are illustrated as mounted to slides which, in turn, are mounted to two ring bearings 465 and 466, which provide for adjustment in the nominal “pan” axis.
The disclosed fixture housing can be employed with the simplest; most economical; and most widely-owned of truss types, while achieving all the advantages of “pre-rig” design, with less time and labor required on-site as no manual change to truss configuration is necessary and the movement between “shipping” and “use” conditions can be mechanized.
The size and weight of the moveable portion of the fixture 460 can be reduced by locating components like power supplies, ballasts, and electronics in the non-moving portion.
One method by which the size of a fixture head can be reduced relocates actuators. A fixture may employ one or more color filters as are often driven from their perimeter by an actuator. To reduce the overall size of the fixture head 460 such an actuator can be relocated to the rear of the housing and a shaft supported by a bearing extend forwardly to drive the filter by means of a beveled gear. The result is a useful reduction in housing size.
It will be understood that the telescoping fixture design previously disclosed will also be of value.
Other embodiments are possible and should not be understood as limited except by the claims.
The improved lighting system of the present invention includes improvements to fixture design and to methods of varying beam parameters having many advantages.
Refer now to
In contrast to
The designs of the compound optical elements of these and subsequent Figures are for illustration only, and should not be understood as limited except by the claims. Lens/element type, lens/element profile, and the number, shape, and distribution of elements across a compound array can be varied to suit the application.
The number and sequence of elements and arrays can also be varied.
It will be seem that one advantage of the present invention is the “miniaturization” of both the optic system and of beam modifying components for it.
For example, both the length of the optical system of
In
In
In
Where prior Figures have illustrated the output of plural beams,
As has been described, techniques that permit remotely varying the color of a fixture's light beam have long been known, both as integral to so-called “automated” lighting fixtures and as accessories employed with so-called “conventional” fixtures.
A wide variety of methods have been disclosed.
“Color-changing” is a term that can be used to describe altering beam color by moving specific color filters completely in and out of the light beam. Examples include known “color wheels”, traditional single-scroll “color scrollers”, and traditional “semaphore” color changers.
“Color-mixing” is a term that can be used to describe altering beam color by the proportional insertion in the light beam of a limited number of filters (or, in the case of additive primaries, of variable quantities of primary-colored light) to generate a far larger number of color sensations.
A popular such “color-mixing” approach is the so-called “CYM” technique as disclosed in U.S. Pat. Nos. 4,914,556 and 4,984,143. It employs filters for each of the subtractive color primaries (cyan, yellow, and magenta) to produce a wide range of color sensations.
In most embodiments, separate filters are provided for each such primary. Refer now to
The relative degree of filtration/saturation is varied by displacing the filter 540 between positions in which all (506NA), part (506NB), or none (506NC) of the light beam passes through the filter material 540M. That portion 541 with no filter material can either comprise the same substrate with no filter material applied, or no substrate at all.
Disadvantages of the approach illustrated in
Relative displacement of filter and beam between no (506OD), some (506OC), more (506B), and full (506A) effect produces the required variation in saturation. Resolution is improved and application is more flexible.
In either of these embodiments the performance of the filters determines the versatility of the color system. Achieving saturated colors requires that the filters themselves be saturated, and, therefore, that they have limited transmission.
Like prior Figures, the filter in
Because filter material 545M is of a substantially higher transmission than filter material 544M, mid-saturation colors produced by the former are more efficient than those produced by the latter. Another effect of the illustrated embodiment and its variations is to improve the resolution of the transition between the effect of a “no effect” position 506PE and a “full saturation” position 506PA.
The “multi-stage” filters disclosed herein offer the deep saturates of those prior art filters required to produce saturated colors, but, having a portion of filter material substantially less saturation and/or other characteristics, have the capability of producing “tints” or “pastels” with higher efficiency and resolution.
While two “filter materials”, one having more and the other less saturation (or other characteristic) three or more materials could be used.
As will be understood, if combined in what is an essentially common filter array (whether produced on a common substrate or assembled from more than one substrate panel), the color system of the present invention can employ the same optical path location and actuators as prior-art systems, and, therefore, comes at no significant incremental cost, other than that of the filter itself.
Further, because the “less-saturated” filter material is, in effect, a “subset” of the more-saturated, that the less- and the more-saturated filter materials can be mechanically independent, located in different planes, and one such filter replace or is added to the other.
While the embodiment illustrated in the prior Figures has been that of a filter displaced linearly along one axis, it will be apparent that many other filter designs are practical. Mechanical embodiments other than linearly-displaced filters or filter wheels can be employed. It will be understood, for example, in the context of other implementations of color-mixing, such as those that insert one or more filters or “flags” into the beam from one or more sides, that a “multi-stage” approach can be employed in such embodiments.
In another alternative disclosed in U.S. Pat. No. 6,142,652, a color-mixing system has a first lens having radial segments condensing the light beam into narrow radial bands, which permit the insertion of filter material deposited on a disc in a similar pattern into the radial bands by limited rotation of the wheel/substrate about its center.
While many color-mixing systems employ three filters each capable of independent adjustment, other embodiments can be employed. It is well known that, for example, in CYM color-mixing, only two of the three subtractive primaries are required to create a color, and various applications disclose the use of color systems employing two, not three, moveable filters, each of those filters having two of the three subtractive primaries, one of the three primaries appearing on both filters. It will be apparent that the “multi-stage” approach can also be employed in such color systems.
U.S. Pat. No. 4,894,760 to the applicant discloses a color mixing system in which color filters are changed by rotating the filter array about its center and saturation is changed by displacing the array relative to the light beam, changing the proportion of the light beam passing through the filter array versus that passing around it. A “compound color” filter wheel is possible that is also capable of displacement in a second direction to vary saturation by varying the proportion of the light beam passing through the filter versus that passing outside of one.
Similarly, it will be understood that the “multi-stage” approach can be used in other color-changing and color-mixing systems.
Fixed “gel” will continue to be used to impart color to some fixtures. Originally dyed gelatine, such materials have been supplanted by various plastic materials with color either infused in or applied to the material.
The method by which such “gels” are retained to the fixture has not, however, improved. Because such materials are flexible (and are subject to distortion and shrinkage resulting from the thermal energy in the light beam) such “gels” are mounted in a metal carrier or “gel frame”, which is then inserted into clips, tracks, or slots provided on or in the fixture housing for frame retention.
However traditional, such a method has a long list of drawbacks.
The “gel” material is typically provided in individual sheets measuring approximately 24″ on a side and must be ordered, sorted, and cut to the various sizes required by the “gel frame” dimensions of the various fixture types in use by a production generally by hand using an ordinary paper cutting-board. Hundreds of such “cuts” of color may be needed. Generally, each such “cut” must be manually marked with its identifying color number to allow its later identification. Each “cut” must then be manual inserted into a “gel frame”. The “gel frame” sandwiches the cut color between two facing halves, which may be formed from a single, folded metal shape or from two parallel shapes that are joined together by a hinge or by mechanical fasteners (typically paper pins). Even if the frame design does not require the use of such fasteners to assemble the two halves/shapes, mechanical fasteners (such as paper pins) and/or tape may be advised or required to prevent the gel material from falling out. The gel frames must then be inserted in the appropriate fixtures either before shipping or after hanging at the venue, which may require that they be marked not only with numbers identifying the gel color used but the specific fixture in which each must be inserted.
Such metal “gel frames” have associated costs to produce and are seldom purchased by a user or a rental operation in significantly greater quantity than the number of corresponding fixtures purchased. As a result, there may be insufficient numbers of “gel frames” to permit “stuffing” a significant additional number with alternative color choices or “spares” to permit rapid replacement. Typically, replacing “gel” color onsite requires bringing the new “cuts” to the fixtures in question; removing the gel frames from the fixtures; removing the old “cut” of color and replacing it with the new; then reinserting the frame.
Metal gel frames can be heavy and can be a safety hazard if they should fall or be dropped from a height.
Modern gel materials are generally durable enough to permit their reuse for multiple productions. However, as the traditional gel frame is too expensive to permit storing used color in frames, “cuts” must be removed after a given production to permit the reuse of the frame on the next one. This requires additional labor and the process of removal can result in damage to the “gel” material, limiting its reuse. Once removed from the frame, the gel material is more difficult to handle and store, and will require at least as much labor to reinsert in a frame for a future production as would the purchase of new color.
There has been some use of gel frames made from thin cardboard in an effort to reduce frame cost and make retention of gel color for subsequent reuse more practical. Such frames are also lighter and therefore easier to handle and safer. However, they are similar in design to metal frames and not more efficient in labor to use. They have met very limited acceptance.
The preparation of gel for retention in fixtures remains a significant consumer of time and labor in the preparation of a lighting system.
The improvements disclosed are intended to reduce these time and labor requirements.
One such improvement is to employ a relatively thin and stiff material for gel frames (including, but not limited to, plastic, metal, cardboard, fibre, etc.) but which is supplied in sheet form similar in size to that in which the gel color is supplied. One such “frame sheet” will thus incorporate more than one gel frame—the quantity and layout depending upon the dimensions of the gel frame in question. All gel frames on a given “sheet” may be of the same size and type and/or different types can be mixed to make the most efficient use of the gel material.
Typical gel frames, whether metal or cardboard, sandwich the gel material between two halves of the gel frame, the improved frame (whether in sheet form or individual) can be used on one side of the gel material. The gel material and improved frame can be attached to each other by any suitable means. One such means can be stapling. Another can be stitching. Another can be an adhesive, whether pre-applied to the frame material or applied in the process of attaching the two. For example, a pressure-sensitive adhesive could be applied to the frame material that would bond to the gel material when the two were placed in contact. Another method would be the use of an adhesive that would be triggered by the application of heat—for example, by a heated press or heated rollers (like the fusing rollers in copiers) used to marry the frame and gel materials.
Such an approach allows mounting the gel material to frames on a whole-sheet, rather than individual “cut” basis. The combined gel/frame can then be sliced apart into discrete frames with dramatically less labor required than prior methods. The sheet frame material can be pre-marked or pre-scored with cutting lines for the frame edges; or can be largely pre-cut, such that only a sharp knife—using the pre-cut outlines in the frame material—is required to cut gel and frame.
The cutting process can be automated by use of a travelling knife moving over the gel/frame material or roller cutters past which the material is driven. Such a mechanism can incorporate a print head that applies codes identifying the gel material, if not the specific fixture in which the gel frame should be inserted, in human-readable and machine-readable (e.g., bar code) form, either directly in ink or via a label.
Compatible software, accepting an input from lighting database software, can determine the quantity of each gel material and of each frame material required; prompting an operator to insert the appropriate combinations of gel material and frame material and driving the marking operation.
Upon completion of its use for one production, the combined gel/frame could be readily removed and filed—including by mechanized and/or automated sorting by frame size, if not gel type (the later by use of a machine-readable code).
While an embodiment has been described in which a sheet of frame material approximately equal in size to the sheet size of gel material is employed, other alternatives are possible—the gel material, whether in sheet or roll form can be trimmed to one relevant dimension before attachment to the frame material, which may itself be in sheet or continuous roll form.
Instead of complete frames, the function of a frame can be served by individual strips of stiff material that are either pre-fabricated in the outline of the required gel frame or are attached directly to the gel material (and each other). Such frames generally being rectangular, such strips could be used to fabricate frames in almost any size. In addition to the use of a rigid material cut to length, other techniques could be employed such as the application of a liquid to the surface of the gel material that would harden to rigidity.
In the fabrication of gel materials, laser-cutting has, on occasion been used and can be used in any of these embodiments. Laser cutting also provides the possibility of marking the gel material itself and/or the frame material with identifying numbers or codes by burning through the material.
In a related area,
Other methods are applicable to systems using present fixtures.
The design is based on four “columns” 601-604 of a structural shape such as rounded-corner square stock, which are maintained parallel by welding to cross-pieces 605 and 607 and diagonal 606.
The distance between the inner faces of two adjacent columns (e.g., 601 and 603) is determined by the width of the stock used for cross-pieces 605-607, which exceeds the width of the tube stock used for the “rungs” 400E and 400G of the truss supported.
The distance between the outer faces of opposite columns (e.g., 601 and 602) is less than the clearance between the inside surfaces of the main chords of the truss (e.g., 400A and 400B).
These columns 601-604 are inserted into the truss from below and straddle the “rungs” 400E and 400G on the top and bottom faces of that truss. No clamp or other attachment is required. A locking pin 626 or 627 can be inserted through pass holes in the two columns on the same side of the truss either above (e.g., pin 627) the low “rung” 400G in the bottom face of the truss, or the high rung 400E (e.g., pin 626), to prevent the leg assembly from coming off. Alternatively, a latch can be used, for example, similar to that used in extension ladders.
When landed on the leg assembly, the truss lower main chords 400C and 400D and lower “rung” 400G of the truss rest atop cross-piece 605.
The columns 601-604 distribute the weight of the truss down to two casters 628 and 629.
The casters 628 and 629 shown are plate—rather than pin-mounted, and a piece of flat plate (617 and 618) is welded to the bottom of columns 601-604 and lower cross-piece 607 to mount casters 628 and 629.
To allow the truss to be strapped to the truck walls for transit without damage to equipment hung from it that extends beyond the truss itself, the legs mount plastic bumpers 631-634. To get the proper height (and also serving as stiffening for the leg assembly) short lengths of stock 621-624 are welded to the columns for mounting them.
If, in an embodiment sized for 20.5″ truss, the “columns” are made from stock 1.5″ in width, 12×12 truss can be accommodated on the same legs, with the truss falling entirely between the two sets of columns. To prevent the leg from rotating around the low rung of the truss, fifth and sixth columns can be provided either permanently or attached that fall between the main chords of the smaller truss.
It has also been found that truss legs are easier to insert it the legs on opposite corners (e.g., 601 and 604) are trimmed down such that they engage only the low rung.
Shapes 608 and 609 can receive lengths of pipe or tube that span between two or more such truss leg sets.
The illustrated is only one of many possible embodiments.
Benefits can be achieved by the use of wheeled dollies under assembled truss sections, especially those (illustrated in in the prior related application), that allow stacking multiple sections atop each other and provide a significant space between the stacked trusses to permit stacking/shipping them with “spansets” and cables attached.
Only a few of the many possible embodiments are here illustrated.
In the Figures beginning with
The embodiment illustrated in
The truss is retained between shapes 662-667 while resting on plate 661. Plate 661 is mounted by means of a pivot, such as hinge 682, to a lower frame including shapes 671-676, which, in turn, is castered. When approaching an irregularity in the surface on which the dolly rolls, those casters 680 on the forward side are free to “ride up” (or down) by the “rocking” action of the lower frame relative to both the upper frame and the truss.
In addition to trusses, whether with or without fixtures and other loads, there is often a need to ship large quantities of (generally steel) pipe used in building and reinforcing structures.
To stack and unstack trusses safely
The Figures in this section illustrate various improvements to trusses and truss construction.
In the prior application, a class of elongated structural shapes were disclosed, having a recess along one side that permit the insertion of an intersecting member which is terminated with a simple and low tolerance cut, rather than requiring coping to conform to the typically cylindrical cross-section of the prior art elongated shape.
The illustrate shape 802 allows ready construction of structures in a single plane such as “flat truss or “ladder beam”. Members intersecting a shape like 802 in other than the same plane as its recess would require coping in the prior art manner.
FIGS. 8O and 8W-8Y are details of some methods by which moveable attachments can be made to the upper (805U) and lower (805L) recesses that may be formed in separate, interlocking, or a common shape. A wheeled trolley 802 is shown. Also shown are hangers 807, pairs of which can be used. Such hangers incorporate a “hook” detail 807J that engages a corresponding detail in the structural shape 805. The hook 807J of one such hanger 807 can be inserted through the opening in the elongated track formed in shape 805, as its width is less than that of the opening. When a second hanger, flipped in the opposite direction, is inserted elsewhere in the track and the two hangers are brought into alignment and fixed, for example, by the illustrated shackle also used to attach the load, the paired hangers cannot be removed—although they can, of course, be slid along the track if not under load.
In addition to joining truss sections by means of these flanges and bolts, a plate 816 may be inserted in the opening 815O in the shape 815, which plate can be retained by pins or bolts thru both the faces of the channel 815 and the plate 816 (e.g., 816H and 816HH). When such a plate 818 is inserted in the opening of the facing shape 815 in an adjacent truss section and is fixed to it by similar bolts or pins, the sections are joined.
Only a few of the many possible embodiments are here illustrated.
The Figures in this section illustrate some of the possible embodiments of parts that serve the functions in joining truss sections and similar structures that presently require specialized “spigot” fittings, hinges, and “corner cubes”.
It will be apparent that a hermaphroditic fitting can also be created with an appropriate offset between the two mating parts.
As illustrated in
In these Figures the parts at the top plane of the trusses are visible, it will be understood that similar parts will typically also be employed near the bottom plane.
FIGS. 9M and 13K-13N illustrate an alternative that uses a “sandwich” of three identical plates and two identical spacers to form a male fitting on one end and a female on the other that mate with the standard adapter shape.
It will also be understood that the sections of shapes like 821 or 822 used to connect truss sections in-line, in hinged, or in fixed angle connections can be mounted to truss ends oriented either vertically or horizontally.
Only a few of the many possible embodiments are here illustrated.
In addition to the fixtures, cabling, distribution and support equipment described, many lighting systems require roadcases or other containers for shipping this equipment to the point of use.
In
These and subsequent Figures illustrate techniques useable for fabricating a variety of roadcases or containers from a few simple extrusions or otherwise formed shapes. The resulting cases are both light and strong, while offering long useable life, and ready stackability. They are applicable to cases, bins, and containers for a variety of contents and uses.
Refer now to
The four lower edges of the roadcase can be fabricated of the same or similar shape.
As seen in
Referring to
As will be seen this shape, like the lower edge shape 852, provides surfaces that align with the corner shape 853 for fastening purposes.
Unlike many cases, bins, and containers, the strength of such a case resides primarily in its frame, so that the side panels need not be structural—and can be made of a wider range of materials and so as to be readily replaced if damaged.
By including a built-in recess 851G for the caster of a stacked roadcase, this design assures that such a case will always be ready to be stacked-upon. And unlike typical roadcases that require the weight of the stacked case be borne by the lid of the case below it, this design transmits the weight of the stacked case directly through the case frame—indeed, no lid is required.
Because the lid is not required for case stacking, it can be both non-structural and omitted when not required to protect the contents. A rigid lid 857 need be no more than a piece of wood or fiberglass. Indeed, as illustrated in
Although the same top edge shape could be used on all four sides, the illustrated shape extends over the interior of the case, reducing the size of the top opening, and so there will be applications where another shape is employed either for two facing sides or all four. The FIGS. 10QA and 10QB illustrate two such shapes, which include the recessed continuous handle and, in one version, the lid recess of the shape 851, but are both significantly narrower.
Referring to the Figures, it will be seen how the various shapes can be used to assemble roadcases and containers for many purposes, in a wide variety of sizes and proportions.
Succeeding figures illustrate additional variations.
Several such shapes illustrate a built-in handle detail (which could be produced by other or additional shapes fabricated with or attached to the main edge member(s)). In the illustrated embodiments, the handle detail's lower profile is a semi-cylindrical shape approximately 2″ in a diameter—and therefore equivalent to the lower profile of the tube stock used in the main chords of most trusses. As previously described, a “J”-shaped hook/adapter with a mating profile on a lifting device would therefore engage both truss chords and roadcase handles, being useable to stack or unstack both.
The same or similar components and techniques can be used in a variety of cases, bins, containers and other shipping carrier types.
Improvements can also be made by improved packaging of the chain motors for transport such that fewer operations are required between transport and use.
The prior related disclosure includes a combined shipping case and corner cube. The next group of Figures illustrate such a unit assembled from a simple family of structural shapes.
Referring to
Referring to
Referring to
As shown in the various drawings, a pass hole for the truss bolts is provided through both overlapping flanges at each corner (for example, hole 944 where extrusions 901 and 914 overlap and hole 913 where 901 overlaps with 911). The result is that the points of connection between the cube and trusses is reinforced and the truss bolts only serve to compress the structural connections within the cube. The various extrusions at these intersections can be welded, bonded, and/or mechanically fastened together.
The “Cubase” shown is, as a corner cube, a 5-way.
The structure of the “Cubase” can be further reinforced by a variety of methods.
The drawings illustrate that the various extrusion flanges define a square opening in the center of each face. As illustrated in various of the sections—notably FIG. 11I—these openings can be covered by plate or extrusion (e.g. 961-964) that serve as additional reinforcement; to close the opening for the Cubase's “case” function, and to provide for attachment of lifting handles (e.g., 969). The handles shown are spring-loaded surface-mount designs, partially recessed behind the flanges of corner extrusions 901-904. Where the infill panel is not structural, materials like fiberglass can be used and, of course, handles can be further recessed in a dish mounted to the infill panel. The mounting location of the handle side-to-side, relative to the physical center of the unit can be adjusted to the actual center-of-gravity of the assembled unit with a chain motor inside.
Other designs for the corner member (whether produced by extrusion or not) are possible.
The illustrated design employs a second extrusion type for its top edge. Referring
These figures present a simple, basic structure. There are a variety of suitable methods for accommodating the chain motor and for providing for the shipping needs of the unit.
As previously disclosed, such a unit would, ideally, accommodate a chain motor in four modes: with the load bolted to the unit and the motor internal to it; with the load bolted to the unit and the unit hung from the motor by a bridle; with the motor internal to the unit and the load hung from the unit; and with the load hung from the motor, the unit having been used as a shipping container for the motor but not employed in hanging the load.
Internal structure for attachment of a motor can be readily provided,
For shipping purposes, a cover 864A may need to be little more than a formed plastic lid with half-round edges 864AB that fit over the top edge extrusion. Because of this overlap, such a lid would largely waterproof the unit. Wells 864AR could be formed in the lid to accommodate casters when units are stacked. A version with a rubber gland in the center through which the chain would pass (and a recess formed in the lid to keep the hook on the top-side of the lid) would provide a high degree of protection when the unit were used outdoors. Were the lid formed from clear plastic, the user could observe the motor's operation with the lid closed.
Casters can be mounted to unit either semi-permanently or be mounted to one or more caster-boards (like PA cabinets) on which the unit sits—the choice depends, in part, on how frequently the bottom (fifth-way) of the Cubase will be used for truss attachment.
The bottom of the unit can also include plastic skids and/or ball casters (e.g., 855R in
Additional figures illustrated additional features including an alternative extrusion for the lower edge.
Various methods of stacking and interlocking multiple such units are possible, including casters or bumpers extending from the bottom of one cube that nest within the top edge extrusions of the one below.
The figures illustrate a variation in which the extrusion used for the cube's lower edges 911A has a concave rather than a convex corner, allowing it to nest in the top edge extrusions of the cube below.
Also illustrated is the use of ball casters 855R. When a cube is bolted into a run of truss and the cube is still on casters, it would, of course, be necessary to lift up the truss sections several inches in the bolting process to align their holes. Using ball casters in the locations shown does not interfere with bolting truss to the cube bottom when desired; requires lifting the trusses only about an inch to align; and still allows rolling the cube (if not the whole bolted structure) on a smooth surface.
For transport, cubes can be castered; placed on individual wheel dollies; or on larger dollies (for example, the double-wide dolly 955D illustrated in
The foregoing application discloses a lighting system incorporating a number of improvements in many aspects of its construction. As each of these improvements can be applied individually, they have been described individually, although it will be understood that, advantageously, they can be combined in the same fixture, if not in the same lighting system. For example, an optimal fixture might employ the compound optical element design, multi-stage color system, and multiple lamp type/variant approaches disclosed. The lamp head incorporating these inventions, would be modular in nature and might be employed with a conventional motorized or non-motorized yoke as well as in the improved package disclosed that ships in prior art truss and displaces between “shipping” and “use” positions. That truss might be constructed using prior art methods but, advantageously, could employ the improved methods disclosed. The efficiency of the system would be further increased by use of the unified power and data distribution scheme disclosed, and that system and other components of the system would advantageously be shipped in cases and bins fabricated as disclosed.
The scope of the inventions herein should not be understood as limited, except by the claims.
This application relates to lighting equipment and systems and improvements thereto. It represents a continuation of application Ser. No. 10/911,028, filed Aug. 4, 2004, which is a continuation-in-part of application Ser. No. 10/403,651, filed Mar. 31, 2003 and incorporates and claims benefit to provisional applications 60/492,537 filed Aug. 5, 2003 and 60/523,530 filed Nov. 19, 2003.
Number | Date | Country | |
---|---|---|---|
60492537 | Aug 2003 | US | |
60523530 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10911028 | Aug 2004 | US |
Child | 11879494 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10403651 | Mar 2003 | US |
Child | 10911028 | US |