The disclosure can be better understood with reference to the following drawings. The elements of the drawings are not necessarily to scale relative to each other, emphasis instead being placed upon clearly illustrating the principles of the disclosure. Furthermore, like reference numerals designate corresponding parts throughout the several views.
In general, the present disclosure pertains to systems and methods for controlling the states of lights and/or other electrical (e.g., electronic) components. In accordance with one exemplary embodiment of the present disclosure, a system employs a centralized base unit that wirelessly communicates with remote switching units, which control various loads, such as lights and/or other electrical components, based on commands from the base unit.
In at least some embodiments, one of the switching units has at least a first user input device and a second user input device. In response to inputs received via the first user input device, the switching unit controls a local load independent of communication with the base unit. However, the switching unit communicates with the base unit to inform it of the current operational state of the local load. The switching unit transmits, to the base unit, messages indicative of inputs received via the second user input device, and the base unit controls at least one remote load based on such messages. The messages may indicate a duration that the second user input device remains continuously activated, and the base unit may control at least one of the remote loads based on such duration.
Further, in at least some embodiments, a user can program various scenes for various loads and then implement a desired scene by providing an input to the base unit or the switching units. In response to the input, the base unit communicates with the switching units such that those switching units affected by the desired scene change the states of their loads, if necessary, to comport with the desired scene.
In one exemplary embodiment, the base unit 52 communicates with switching units 55a-h via wireless signals, such as radio frequency (RF) signals. Depending on the transmission power of such signals and the distance between a respective switching unit 55a-h and the base unit 52, it may be desirable to employ one or more repeaters. For example,
In particular, the base unit 52 comminutes with the switching unit 55b through repeaters 63a and 63b. In this regard, a wireless signal destined for the switching unit 55b is received by the repeater 63b, which regenerates the signal and wirelessly transmits a regenerated signal representative of the original wireless signal transmitted by the base unit 52. The repeater 63a receives the regenerated signal and regenerates this signal to define yet another regenerated signal, which is wirelessly transmitted by the repeater 63a. The switching unit 55b receives the regenerated signal transmitted by the repeater 63a, and this received signal is representative of the original wireless signal transmitted by base unit 52.
Further, the switching unit 55b may transmit wireless signals in the reverse direction of the foregoing communication path to communicate information to the base unit 55h. Moreover, the use of the repeaters 63a and 63b allows the switching unit 55b to be located farther from the base unit 52 and still achieve a desired level of signal quality. If the desired level of signal quality can be achieved without the use of repeaters 63a and 63b, then the repeaters 63a and 63b would be unnecessary. In such an example, the base unit 55h could communicate directly with the switching unit 55b.
In a similar manner, the base unit 52 communicates with switching units 55c and 55d through the repeater 63c. Further, the base unit 52 communicates with switching unit 55e through repeater 63d and with switching units 55f and 55g through repeaters 63d and 63e. However, the base unit 52 communicates directly with switching units 55a and 55h without the use of any repeaters. In other embodiments, other numbers and arrangements of switching units 55a-h and repeaters 63a-e are possible.
Note that the system manager 74 and the communication manager 77, when implemented in software, can be stored and transported on any computer-readable medium for use by or in connection with an instruction execution device that can fetch and execute instructions. In the context of this document, a “computer-readable medium” can be any means that can contain, store, communicate, propagate, or transport a program for use by or in connection with an instruction execution device. The computer readable-medium can be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor device or propagation medium.
The exemplary embodiment of the base unit 52 depicted by
As shown by
The component state data 95 indicates the current operational state of each load being controlled by the system 50. For example, if a particular light source is being controlled by one of the switching units 55a-h, the component state data 95 indicates whether the light source is activated (i.e., emitting light) and, if so, whether and to what extent the light source is dimmed. Moreover, if the system manager 74, based on the component state data 95, determines that a particular load is to be at a different operational state relative to its current operational state, the system manager 74 may be configured to transmit a command to one of the switching units 55a-h in order to instruct such unit 55a-h to change the state of the particular load.
The switch manager 111 generally controls the operation of the switching unit 55a-h, as will be described in more detail hereafter. A clock 121 provides the switch manager 111 with a clock signal that can be used for timing operations, as will be described in more detail hereafter. The transceiver 114 is configured to communicate wireless signals (e.g., RF signals) with other components of the system 50, such as one or more of the repeaters 63a-e, one or more other switching units 55a-h, and/or the base unit 52. In other embodiments, the transceiver 114 can be configured to communicate non-wireless signals.
The switch interface 117 comprises at least one user input device 122, such as, for example, a button or other type of switch, for enabling users to provide inputs to the system 50. Information received from the switch interface 117 may be used by the switch manager 111 to control the operation of the unit 55a-h and/or may be communicated to other components, such as the base unit 52, of the system 50.
Referring again to
In the example shown by
However, if the light source 144 is to be activated, then the load controller 119 can be configured to allow electrical power to flow through the load controller 119 depending on the desired dim state of the light source 144. For example, if the light source 144 is to be activated at full power (i.e., with no dimming), the load controller 119 allows the power signal to fully pass. However, if the light source 144 is to be dimmed, then the load controller 119 clips at least some of the power signal or otherwise adjusts the power signal to achieve the desired dimming effect. For example, if the light source is to be 50% dimmed, the load controller 119 clips or otherwise modifies the power signal such that the light source 144 receives only 50% of the power otherwise available from connections 104 and 105. Techniques for clipping or otherwise adjusting a power signal to provide a desired dimming effect are well-known in the art. Exemplary configurations of at least the power supply 102 and load controller 119, as well as exemplary techniques for dimming the light source 144, are described in commonly-assigned U.S. patent application Ser. No. (to be determined), attorney docket no. 320306-1061, entitled “Systems and Methods for Providing Electrical Power from an Alternating Current Power Source,” and filed on even date herewith, which is incorporated herein by reference.
It should be noted that the various components of the switching unit 55a-h of
The exemplary embodiment of the switching unit 55a-h depicted by
As shown by
Each switching unit 55a-h is correlated with a unique identifier that identifies the unit 55a-h relative to the other units 55a-h in the system 50. Such an identifier may be included in a communicated message (e.g., a command) to indicate a source or target for the message. In addition, Each light source 144 in the system 50 is similarly correlated with an identifier, which uniquely identifies the light source 144 relative to other light sources and/or other loads in the system 50. Such identifiers may be useful for facilitating independent control of multiple light sources coupled to the same switching unit 55a-h. Note that, in some embodiments, a light identifier may uniquely identify a light source 144 relative to the other light sources 144 coupled to the same switching unit 55a-h such that a light source 144 and a remote light source 144 could have the same identifier. In such an embodiment, a light source 144 can be uniquely identified with respect to other remote light sources 144 via a combination of its respective light identifier and the identifier of its local switching unit 55a-h (i.e., the switching unit that directly controls the light source).
As described above, in one exemplary embodiment shown by
In addition, for each button 135-137, a user is able to input two types of commands, a short press command and a long press command, although other numbers and types of commands may be input per button 135-137 in other embodiments. A short press command occurs when a user continuously presses a button 135-137 for less than a specified time period (e.g., less than 1 second), such as when a user briefly taps the button. A long press command occurs when a user continuously presses a button 135-137 for longer than the specified time period, referred to hereafter as the “short press threshold period.” The amount of time that the user continuously presses and holds a button 135-137 for a long press command is used to control the state of a load affected by the long press command, as will be described in more detail hereafter.
To enable the switch manager 111 to distinguish between short press commands and long press commands, the switch interface 117 provides the switch manager 111 with one or more signals indicating when any of the buttons 135-137 is being pressed by a user. Upon receiving an indication that a user has pressed any of the buttons 135-137, the switch manager 111 begins tracking, based on the clock signal from the clock 121, the amount of time that lapses. The switch manager 111 repetitively compares a time value indicative of the amount of time that has currently lapsed since the foregoing indication to a threshold to determine if the amount of time is longer than the short press threshold period. If the switch manager 111 receives a notification that the pressed button 135-137 has been released before the threshold is exceeded, the switch manager 111 determines that a short press command has been received via the pressed button 135-137. If, on the other hand, the threshold is exceeded without yet receiving a notification that the pressed button 135-137 has been released, the switch manager 111 determines that a long press command is being received via the pressed button 135-137.
Referring to
If the local load 142 is deactivated, then the switch manager 111 activates the load 142, as depicted by block 306 of
Note that, in one exemplary embodiment, the component state data 95 (
If the switch manager 111 determines, in block 303 of
As depicted by block 311, the switch manager 111 updates the switch data 189 (
If a user is entering a long press command via the top button 135 of a particular switching unit 55a-h, then the switch manager 111 of the particular switching unit 55a-h is configured to detect the long press command in block 317 of
If a determination is made that the user is entering a long press command, then the switch manager 111 is configured to change the state of the unit's local load 142. For example, in response to initiation of a long press command, the switch manager 111 may be configured to consult the switch data 189 (
In the exemplary embodiments described herein, the soft rate is a time value indicating the amount of time that it would take to linearly power a load from a load level of 0% to a load level of 100% or vice versa. For example, a load rate of 5 is satisfied if a load is linearly powered up at a rate such that the load would go from a 0% load level to a 100% load level in five seconds. Thus, in block 325, the switch manager 111 provides a request to the load controller 119 to increasingly provide power to the load 142 at a rate equal to a predefined soft rate. In response, the load controller 119 controls the amount of power allowed to pass such that the power delivered to the load 142 is increased at a rate equal to the requested soft rate. The load controller 119 allows the power to increase until either the 100% load level is reached or until the load controller 119 receives a command to stop the power increases, as will be described in more detail below.
If a determination is made in block 321 that the local load 142 is activated, then the switch manager 111 begins powering down the load 142, as depicted by block 328 of
Moreover, once the user presses the top button 135 to enter a long press command, the light source 144 begins to either increase in brightness or decrease in brightness due to performance of either block 325 or 328. When the brightness reaches a desired level, the user can stop pressing the top button 135 to indicate that the brightness change should stop. Such an event ends the long press command being entered. The switch manager 111 detects this end in block 333 of
Since the state of the load 142 has changed in response to the long press command, the switch manager 111 updates the switch data 189 (
Note that switch manager 111 is able to control the state of its local load 142 based on inputs from the top button 135 regardless of whether the switch manager 111 is able to communicate with the base unit 52. Thus, if the base unit 52 becomes inoperable for some reason or if communication with the base unit 52 or other remote components is lost, the switch manager 111 is still able to control the state of its local load 142 based on user inputs received via the top button 135.
The other buttons 136 and 137 can be used to control different components of the switching unit's local load 142. For example, the top button 135 can be used to control one light source 144, and at least one of the other buttons 136 and 137 can be used to control other light sources 144 in a similar manner described above for the top button 135. However, in one exemplary embodiment, each light source 144 of the local load 142 is controlled via the inputs from the top button 135, as described above, and the other buttons 136 and 137 are used for receiving inputs for controlling other aspects of the system 50, such as the operational states of remote loads or scenes. Further, it is unnecessary for the switch manager 111 to be aware of how an input from one of the buttons 136 or 137 controls a remote load or scene. Such information may reside at the base unit 52 or at a remote switching unit 55a-h.
To better illustrate the foregoing, refer to
For illustrative purposes, assume that the middle button 136 (
Assume that a user enters a short press command via the middle button 136 of the switching unit 55g. In such an example, the switch manager 111 of the unit 55g, upon determining that a short press command has been received from the button 136, transmits an input message to the base unit 52, as depicted by blocks 431 and 433 of
Upon receiving the input message from switching unit 55g, the base unit 52 analyzes the system data 94 (
Moreover, in block 452 of
For example, a delay value of 0 within a command may indicate that an identified switching unit 55f is to immediately begin controlling the identified light sources 412-414 according to the load level value and soft rate value in the command. However, a delay value of 30 may indicate that the identified switching unit 55f is to wait 30 seconds (or some other unit of time) before adjusting the operational states of the identified light sources 412-414.
Upon receiving a command from the base unit 52, each identified switching unit 55a-h performs the requested command, as indicated by blocks 472 and 475 of
Upon determining that the command has been completed in block 478, the switch manager 111 of the unit 55f updates the switch data 189 (
In another example, assume that a user at switching unit 55g does not desire to change the states of the lights 412-414 to a 0% or 100% load level but rather to some load level therebetween. Further assume that the system 50 is configured to enable such a change via a long press command entered via the middle button 136 of the switching unit 55g. In such an example, the user presses and holds the middle button 136 of the switching unit 55g. When the button 136 is pressed for longer than the short press threshold period, the switch manager 111 of the unit 55g determines that a long press command is being received, as indicated by block 505 of
Upon receiving the input message, the communication manager 77 (
For example, assuming that the data 95 indicates that the light sources 412-414 are currently deactivated (i.e., at a load level of 0), the system manager 74 may define a command instructing the switching unit 55f to power up the light sources 412-414 to a load level of 100% at the predefined soft rate (e.g., 5). Such a command may include the identifier of the unit 55f, the desired load level (i.e., 100 in this example), and the desired soft rate (i.e., 5 in this example). The system manager 74 passes the command to the communication manager 77, which transmits the command to the switching unit 55f via transceiver 71.
Upon receiving the command transmitted from the base unit 52 in the instant example, the switching unit 55f controls the states of the light sources 412-414, as instructed. Thus, in the instant example, the switch manager 111 (
However, assume that, as the brightness of each light source 412-414 increases, the user decides that the light sources 412-414 have reached a desired load level. Accordingly, the user releases the button 136 before the load levels of the light sources 412-414 reach 100%. When the user releases the button 136, the switch manager 111 of the switching unit 55g in Room 2 detects this event and transmits another input message, as indicated by blocks 522 and 525 of
In response to the foregoing input message, the system manager 74 (
If this command is received by the switching unit 55f before the load levels of light sources 412-414 reach their target (i.e., 100% in the instant example), then the switch manager 111 of the unit 55f makes a “yes” determination in block 481. The switch manager 111 then controls the states of the light sources 412-414 according to the newly received command. In the instant example, the switch manager 111 transmits a request to the load controller 119 of the unit 55f instructing the load controller 119 to stop adjusting the load levels of the light sources 412-414 so that these load levels remain at their current state. In response, the load controller 119 stops increasing the load levels of the light sources 412-414.
In addition, the switch manager 111 updates the switch data 189 (
As described in the above examples, the base unit 52 can receive inputs from various switching units 55a-h and determine which actions are to be performed based on these inputs. In some situations, it may be desirable for a user to predefine at least one scene that pertains to multiple switching units 55a-h. For example, a user could program the system 50 such that, for one scene, loads of various switching units 55a-h are automatically controlled in a predefined manner in response to a user input for activating the scene. As a mere example, a particular scene could be defined in which a light source controlled by one switching unit 55a-h is activated and a light source controlled by another switching unit 55a-h is deactivated. Another scene could be defined such that all of the lights in a house are automatically activated to a load level of 100% or some other load level. A user might activate such a scene when the user is frightened by an unexpected sound or think that an intruder is attempting to gain access to the user's house. Any given scene, when activated, might control all of the lights in the system 50 or only some of the lights. Further, for different scenes, different loads may be controlled in different manners.
Data indicating how the loads should be controlled for various scenes can be stored at the base unit 52. When a user requests activation of a particular scene, the base unit 52 may then consult such data and determine which loads are affected by the requested scene. The base unit 52 may then transmit commands to the switching units 55a-h controlling such loads in order to change the states of these loads in accordance with the requested scene. For example, if a particular light source is to be activated to a load level of 50% for a particular scene requested by a user, the base unit 52 may transmit a command to the switching unit 55a-h controlling this light source. The command may include sufficient information, such as the appropriate light identifier, load level value, and soft rate value, for enabling the light source to be appropriately controlled.
However, in one exemplary embodiment, which will be described in more detail hereafter, the information indicating how a particular light source is to be controlled for a scene is stored at the switching unit 55a-h controlling the light source, not the base unit 52. Thus, the process of implementing the scene may be simplified, and the scene may be implemented more efficiently. In this regard, the base unit 52 may communicate to the switching units 55a-h information indicating when a user submits a request for implementing a particular scene. Each of the switching units 55a-h affected by the scene may then consult the data stored therein to determine how it is control its respective local load. Thus, it is unnecessary for the base unit 52 to inform each unit 55a-h how it is to respond to the requested scene.
To better illustrate the foregoing, assume that a user desires to define a particular scene, referred to as “movie watching scene.” Referring to
Scene data 188 (
Note that the last entry, which also has a scene 1 identifier, indicates that the light source 411 is to be powered down to a load level of 0% (i.e., deactivated) 60 seconds after activation of the scene at a soft rate of 10. Thus, the light source 411, in addition to being powered to a specified load level (i.e., 50% in this example), is later gradually powered down until it is deactivated. Thus, if a user enters the Room 1 about 20 second after activation of the movie watching scene, the user should have about 40 seconds to get situated (e.g., to find a seat, find a remote control, and/or begin playing a movie) before the switching unit 55a begins to power down the light source 411.
The data 188 further indicates that the switching unit 55f is to begin powering down the light source 413 to a target load level of 0% at a soft rate of 5 after 10 seconds have elapsed since activation of the movie watching scene. In this regard, it may be expected that a user who activates the movie watching scene would pass light source 413 about 10 seconds after activation of this scene via unit 55g if the user began walking toward Room 1 upon activation. Thus, it is anticipated that the light source 413 should begin powering down just after the user passes it. The data 188 also indicates that the switching unit 55f is to begin powering down the light source 412 to a target load level of 0% at a soft rate of 5 after 15 seconds have elapsed since activation of the movie watching scene. In this regard, it may be expected that a user who activates the movie watching scene would pass light source 412 about 15 seconds after activation of this scene via unit 55g if the user began walking toward Room 1 upon activation. Thus, it is anticipated that the light source 412 should begin powering down just after the user passes it.
An exemplary use of the system 50 to effectuate the exemplary movie watching scene described above will be described in more detail hereinbelow.
In this regard, assume that a user activates the movie watching scene by tapping the bottom button 137 of the switching unit 55g just before he begins walking toward Room 1 through the Hall. The switch manager 111 of the unit 55g detects the short press command and transmits an input message to the base unit 52 in block 433 of
In response, the system manager 74 instructs the communication manager 77 to broadcast a scene command to each of the switching units 55a-h. A “scene command,” as used herein, includes the identifier of a requested scene. Note that, in the instant example, it is unnecessary for the base unit 52 to be aware of how each unit 55a-h behaves during the requested scene. Further, since the scene command is broadcast to each unit 55a-h, it is unnecessary for the base unit 52 to even be aware of which switching units 55a-h are affected by the requested scene. Moreover, based on the instructions from the system manager 74, the communication manager 77 transmits, via transceiver 71 in block 611 of
In the instant example, the requested scene only affects the switching units 55a and 55f. In such an example, the scene data 188 (
The scene data 188 of switching unit 55f, on the other hand, includes several entries corresponding with the requested scene, as depicted by
The scene data 188 of switching unit 55a also includes several entries corresponding with the requested scene, as depicted by
Note that it is unnecessary for the switch manager 111 to wait for completion of the scene command before transmitting any state update messages. For example, the switch manager 111 may transmit a state update message once the light source 411 is powered up to a load level of 50% or at some other point or points during the scene. Thus, the component data 95 (
Accordingly, each of the affected switching units 55a and 55f takes the appropriate steps to implement the requested scene without the base unit 52 having to specify such steps or even having any knowledge of these steps. Moreover, the base unit 52 simply determines that scene 1 has been requested and generates a command to trigger each affected switching unit 55a-h to implement the requested scene. It is up to each individual unit 55a-h to determine if the requested scene applies to that unit 55a-h and, if so, to determine what actions should be taken to implement the requested scene.
Similar to the way that long press commands can be used to dynamically set a load level of a particular load to a desired level, a long press command can also be used to dynamically control progression of a requested scene. For example, the system data 94 may be defined such that a long press command entered via the bottom button 137 of the switching unit 55g corresponds to scene 1. Thus, in response to an input message indicating that a long press command has been received via button 137 of the switching unit 55g, the system manager 74 may be configured to instruct the communication manager 77 to broadcast a scene command identifying scene 1. Thus, as described above the affected switching units 55a and 55f may begin implementing scene 1. However, once the user stops pressing the bottom button 137 of switching unit 55g, the switch manager 111 of the unit 55g may be configured to detect an end to the long press command and transmit an input message indicative of such detection. In response, the system manager 74 may request that the communication manager 77 transmit a stop scene 1 command indicating that scene 1 is to be stopped. In response to this command, the switching units 55a and 55f may be configured to stop changing the state of the light sources 411-414 if scene 1 has not been completed. Thus, the states of the light sources 411-414 remain constant relative to the current states of these light sources 411-414 when the stop scene 1 command is broadcast. The light sources 411-414 remain in such constant states until another event, such as another user input, causes at least one of such states to be changed.
Note that the system data 94 (
It should be noted that the exemplary scenes and techniques described above for controlling the states of the loads of the system 50 are presented for illustrative purposes. Many other types of scenes and techniques for controlling such loads are possible in other embodiments and would be apparent to one of ordinary skill in the art upon reading this disclosure.
In at least one exemplary embodiment, light indicators are used to indicate the states of the loads and scenes controlled by the system 50. For example,
The faceplate 133 covers a printed circuit board (PCB) 644 on which various components of the local switching unit 55a-h (
The buttons 135-137 are movable in the y-direction when pressed by a user, and contact switches (not shown) may be mounted on the PCB 644 or other structure to sense when any of the buttons 135-137 have been pressed. Further, as shown by
Each of the light indicators 655-657 corresponds to a respective one of the buttons 135-137 and indicates the state of the load or scene controllable via the corresponding button. In the instant example, each light indicator 655-657 corresponds to the button 135-157 through which the indicator's light passes. Thus, indicators 655-657 correspond to buttons 135-137, respectively.
The switch manager 111 and indicator controllers 685-687 are configured to control the states of the light indicators 655-657 such that each indicator 655-657 indicates whether the load or scene controlled by the corresponding button 135-137 is activated. For example, in one embodiment described above, the top button 135 is used to control the state of the local load 142 that is directly coupled to the switching unit 55a-h. When the local load 142 controlled by the button 135 is activated, the controller 685 causes the indicator 655 to emit light at a first brightness level, and when the local load 142 controlled by the button 135 is deactivated, the load controller 685 causes the indicator 655 to emit light at a second brightness level. As an example, when the load 142 is activated, the indicator 655 may emit light at a higher brightness level than when the load 142 is deactivated. Thus, a user by observing the brightness state of the indicator 655 can determine whether the load 142 controlled by the corresponding button 135 is currently activated.
The states of the other indicators 656 and 657 can be similarly controlled. For example, if the button 136 is used for controlling an activation of a remote load, then the brightness of the indicator 656 may be similarly controlled to reflect whether the remote load is currently activated. In some examples, the button 136 may be used to activate a particular scene, which can include various numbers of loads. The brightness level of the indicator 656 may be used to indicate whether the scene is currently activated. As an example, if the scene is currently activated, the brightness level of the indicator 636 may be set to a higher brightness level than when the scene is not currently activated.
Note that the brightness levels of the indicators 655-657 can be controlled by controlling the amount of current and, consequently, power that is received by each indicator 655-657. For example, if the brightness level of the indicator 655 is to be increased, the controller 685 may allow more current to flow therethrough such that the brightness of the indicator 655 is increased. If, on the other hand, the brightness level of the indicator 655 is to be decreased, the controller 685 may allow less current to flow therethrough such that the brightness of the indicator 655 is decreased. The other indicators 656 and 657 may be similarly controlled by the controllers 686 and 687, respectively.
In addition, one of the states of the indictors 655-657 may be an off state. As an example, if the load 142 controlled by the button 135 corresponding to indicator 655 is deactivated, the controller 685 may electrically isolate the indicator 655 from the power supply 102 such that the indicator 655 emits no light. If the foregoing load 142 is activated, the controller 685 may electrically coupled the indicator 655 to the power supply such that the indicator emits light. In another embodiment, the indicator 655 continuously emits light albeit at different brightness levels depending on the state of the load controlled by the corresponding button 135.
In one exemplary embodiment, the base unit 52 is used to control the states of the indicators 655-657 at each of the switching units 55a-h, although other techniques for controlling the indicators 655-657 are possible in other embodiments. In this regard, the base unit 52 monitors the states of the loads and scenes in the system 50 via messages communicated between the base unit 52 and the switching units 55a-h, as described above. When the system manager 74 of the base unit 52 determines that the state of a load or scene has changed, the system manager 74 is configured to transmit an indicator update command to each switching unit 55a-h having a button 135-137 that controls the load or scene. The switch manager 111 of each such switching unit 55a-h receives the message and instructs the appropriate indicator controller 685-687 to change the brightness state of the affected indicator 655-657, as appropriate.
In one exemplary embodiment, the indicators 655-657 operate in various modes in which the brightness levels in each of the modes are different. For example, in one embodiment, the indicators 655-657 operate in one mode, referred to as the “day mode,” during daytime hours and operate in another mode, referred to as the “night mode,” during nighttime hours. Various other numbers and types of modes are possible in other examples.
In each mode of operation, each of the indicators 655-657 has at least two brightness states, as described above, indicating whether the load or scene controlled by the corresponding button 135-137 is currently activated. For illustrative purposes, one of the states, which indicates that the load or scene controlled by the corresponding button 135-137 is currently activated, will be referred to hereafter as the “activated state,” and the other state, which indicates that such load or scene is currently deactivated, will be referred to as the “deactivated state.” The brightness level of at least one of the states is preferably different depending on the mode of operation. In this regard, the brightness level of at least one of the indicators 655-657 is higher in one of the modes than in the other mode.
For example, in one exemplary embodiment, the brightness of the indicator 655 in the activated state for the day mode is brighter than that of the indicator 655 in the activated state for the night mode. In addition, the brightness of the indicator 655 in the deactivated state for the day mode is brighter than that of the indicator 655 in the deactivated state of the night mode. In other words, the brightness of each respective state is higher in the day mode than in the night mode. Accordingly, the brightness of the indicator 655 can be higher during the day than at night helping the user to better discern the state of the indicator 655 during the day when there is likely more ambient light. Further, by reducing the brightness levels of the indicator states at night, the indicator 655 may be less distracting to a user and/or have a more desirable brightness level when ambient light is likely less. Moreover, by switching modes of operation for the indicator 655 based on the time of day, the aesthetic appearance of the indicator 655 may be improved. The other indicators 656 and 657 may be similarly controlled such that their brightness levels are generally higher during certain time periods and lower during other time periods.
It is possible for the switch manager 111 to track time based on the clock 121 and to switch the indicator 655 from day mode to night mode. In this regard, when operation of the indicator 655 is to be switched from one mode to the other, the switch manager 111 may transmit a notification message to the indicator controller 685, which controls the brightness of the indicator 655 according to the identified mode until receiving another notification to switch modes.
In another embodiment, the base unit 52 comprises a clock 690 (
As an example, assume that the system data 94 indicates that the day mode is to run from 8:00 a.m. to 5:00 p.m. and that the night mode is to run during the remainder of the day. Upon reaching 5:00 p.m., the system manager 74 instructs the communication manager 77 to broadcast a mode switch command indicating that modes of operation of all of the light indicators 655-657 of the system 50 are to transition from day mode to night mode. In response, the brightness level of each light indicator 655-657 is decreased. In this regard, the brightness of indicators 655-657 in the activated state is decreased from a first level (referred to as “activated high”) to a second level (referred to as “activated low”), and the brightness of indicators 655-657 in the deactivated state is decreased from a third level (referred to as “deactivated high”) to a fourth level (referred to as “deactivated low”), where the deactivated high level may be above, below, or equal to the activated low level.
Upon reaching 8:00 a.m., the system manager 74 instructs the communication manager 77 to broadcast a mode switch command indicating that modes of operation of all of the light indicators 655-657 of the system 50 are to transition from night mode to day mode. In response, the brightness level of each light indicator 655-657 is increased. In this regard, the brightness of indicators 655-657 in the activated state is increased from the activated low level to the activated high level, and the brightness of indicators 655-657 in the deactivated state is increased from the deactivated low level to the deactivated high level.
In another embodiment, the mode of operations of different light indicators may occur at different times. For example, one indicator may be transitioned to night mode at 5:00 p.m., and another indicator may be transitioned to night mode at 6:00 p.m. The system manager 74 can be configured to track when each indicator is to switch modes of operation and send individual mode switch commands to the affected switching units 55a-h as appropriate.
In one exemplary embodiment, each time the state of an indicator 655-657 is transitioned via a command from the base unit 52, the system manager 74 specifies, in the command, the exact state to which the indicator is to be transitioned. In this regard, during the day mode, for each indicator update command, the system manager 74 specifies either the activated high level or the deactivated high level depending on the operational state of the load or scene controlled by the corresponding button 135-137. During the night mode, for each indicator update command, the system manager 74 specifies either the activated low level or the deactivated low level depending on the operational state of the load or scene controlled by the corresponding button 135-137. Accordingly, it is unnecessary for any of the components in the switching units 55a-h to keep track of which mode is currently being implemented. In this regard, upon receiving an indicator update command, each switching unit 55a-h simply updates the identified indicators as instructed. In such an example, the system manager 74 may broadcast one or more indicator update commands in response to a determination that a transition between the day mode and the night mode is to occur.
Referring to
Assume that a user enters a short press command via button 135 of switching unit 55a. According to exemplary techniques described hereinabove, the light source 411 is activated in response to such a command. In addition, as described above, the switch manager 111 of the unit 55a transmits an input message to the base unit 52 indicating that the short press command has been received. In response, the system manager 74 of the base unit 52 determines that the light source 411 has been activated. Thus, the system manager 74, based on the system data 94, determines that this light source 411 is controlled by the bottom button 135 of switching unit 55a and the middle button 136 of switching unit 55f and that the corresponding light indicators should be updated (i.e., indicator 655 of unit 55a and indicator 656 of unit 55f). Note that the indicators 657 of switching units 55f and 55g do not need to be updated in the current example since the scene controlled by the corresponding buttons 137 of units 55f and 55g has not been initiated.
Accordingly, the system manager 74 transmits a command identifying the switching unit 55a and the indicator 655 and instructing that the state of this indicator 655 of the identified unit 55a be changed to the activated state. In response, the switch manager 111 of the unit 55a notifies the indicator controller 685 that the state of indicator 655 is to be changed to the activated state. In response, the controller 685 adjusts the power delivered to the indicator 655 such that the brightness of this indicator 655 is changed to reflect that the light source 411 is currently activated.
Similarly, the system manager 74 transmits a command identifying the switching unit 55f and the indicator 656 and instructing that the state of this indicator 656 of the identified unit 55f be changed to the activated state. In response, the switch manager 111 of the unit 55f notifies the indicator controller 686 that the state of indicator 656 is to be changed to the activated state. In response, the controller 686 adjusts the power delivered to the indicator 656 such that the brightness of this indicator 656 is changed to reflect that the light source 411 is currently activated.
Accordingly, even though an input was received only through the button 135 of unit 55a, the corresponding indicators of both this button 135 and the button 136 of the unit 55f are changed to reflect the change in the operational state of the light source 411.
In another example, instead of receiving a short press command at button 135 of unit 55a, assume that a short press command is received via button 137 of unit 55g indicating that a scene affecting the light source 411 is to be activated. In this regard, assume that, in such a scene, the light source 411 is to be activated nine seconds after the start of the scene.
In such an example, the switch manager 111 of unit 55g transmits an input message to the base unit 52 indicating that a short press command has been received via button 137. In response, the system manager 74 determines, based on the system data 94, that activation of a particular scene, referred to herein as “scene 10,” has been requested. Thus, the system manager 74 instructs the communication manager 77 to broadcast a scene command identifying the particular scene. The switching units 55a-h affected by the identified scene (i.e., scene 10 in the instant example) control their loads accordingly.
In addition, the indicators 657 of units 55f and 55g are immediately transitioned to the activated state to indicate that the scene controlled by the bottom buttons 137 of these units 55f and 55g is currently activated. The switch managers 111 of the units 55f and 55g may be configured to update the indicators 657 as part of the scene that is being implemented. Alternatively, in responding to the input message from the unit 55g, the system manger 74 can be configured to transmit, in addition to the scene command, commands to the units 55f and 55g instructing these units 55f and 55g to transition the indicators 657 to the activated state.
About nine seconds after activation of the scene, the light source 411 is activated as part of the scene being implemented. Thus, about nine second after activation of the scene, the indicator 655 of unit 55a and the indicator 656 of unit 55f are transitioned to the activated state to indicate that the light source 411 controlled by the button 135 of unit 55a and the button 136 of unit 55f is currently activated. The switch managers 111 of the units 55a and 55f may be configured to update such indicators as part of the scene that is being implemented. Alternatively, in responding to the input message from the unit 55g, the system manger 74 can be configured to transmit, in addition to the scene command, commands to the units 55a and 55f instructing these units 55a and 55f to transition the foregoing indicators to the activated state.
Note that the indicators are appropriately updated when the scene is deactivated. For example, assume that, after scene 10 has been activated, a user enters a short press command via the bottom button 137 of switching unit 55g. In response, the switch manager 111 of unit 55g transmits, to the base unit 52, an input message indicating that a short press command has been received by the button 137 of unit 55g. In response, the system manager 74, based on the system data 94, determines that the short press command pertains to scene 10. Further, based on the component state data 95, the system manager 74 determines that scene 10 is currently activated. Thus, the system manager 74 determines that scene 10 is to be deactivated. The system manager 74 then broadcasts a scene command identifying scene 10 and indicating that this scene is to be deactivated. In response, the switch manager 111 of unit 55a receives the scene command and determines, based on the scene data 188, that the light source 411 is affected by the command. Therefore, the switch manager 111 deactivates the light source 411 such that it stops emitting light.
Since the scene has been deactivated, the system manager 74 also transmits indicator update commands to switching units 55f and 55g instructing each of these units to transition its indicator 657 corresponding to its bottom button 137 to a deactivated state. Thus, the indicators 657 of units 55f and 55g are appropriately updated to reflect the deactivation of the scene. In addition, the system manager 74 updates the component state data 95 to indicate that scene 10 has been deactivated.
Since deactivation of scene 10 results in deactivation of the light source 411, which is controlled by the top button 135 of unit 55a and the middle button 136 of unit 55f, the system manager 74 also transmits indicator update commands to switching units 55a and 55f instructing these units to transition the indicator 655 of switching unit 55a and the indicator 656 of switching unit 55f, respectively, to the deactivated state. Thus, the indicator 655 of unit 55a and the indicator 656 of unit 55f are appropriately updated to reflect the deactivation of the light source 411.
It should be noted that there may be various ways for a scene to be deactivated. For example, a scene may be deactivated via an input provided to a button 135-137 responsible for controlling activation of the scene, as described above. In another example, it is possible for a scene to be deactivated by changing a state of one or more loads affected by the scene. As a mere example, assume that after scene 10 is activated in the foregoing embodiment, that a short press command for deactivating the light source 411 is received via the top button 135 of switching unit 55a. In such an example, the light source 411 is deactivated. In addition, the indicator 655 of switching unit 55a and the indicator 656 of switching unit 55f are transitioned to the deactivated state.
However, the system data 94 may be defined such that scene 10 is to be deactivated if the light source 411 is deactivated. In such a case, the system manager 74, upon receiving an input message indicating that the short press command has been received by the top switch 135 of unit 55a, broadcasts a scene command identifying scene 10 and indicating that this scene is to be deactivated. In response, each light source affected by the scene is deactivated. In addition, the system manager 74 transmits an indicator update message to units 55f and 55g, which transition the indicators 657 of these units 55f and 55g to the deactivated state thereby indicating that the scene controlled by the corresponding bottom buttons 137 of unit 55f and 55g are currently deactivated.
In an alternative embodiment, the units 55f and 55g may transition the indicators 657 of these units 55f and 55g to the deactivated state in response to the command for deactivating the scene such that transmission of separate indicator update commands is unnecessary. In addition, in another embodiment, the system data 94 may be defined such that deactivation of the light source 411 does not necessarily deactivate scene 10. For example, the system data 94 may be defined such that scene 10 is deactivated if each of some combination of loads affected by scene 10 is deactivated, wherein deactivation only one such load within the combination does not trigger deactivation of scene 10. In other examples, other types of trigger events may be used to deactivate a scene.
In various examples described above, a load or scene is described as ramping up or down, in response to a long press command, depending on the current activation state of the load or scene. For example, in response to a long press command, a deactivated load may power up at increasingly higher power until a target load level (e.g., 100%) is reached or until the long press command ends. In addition, in response to a long press command, an activated load may power down at decreasingly lower power until a target load level (e.g., 0) is reached or until the long press command ends. In one exemplary embodiment, the component state data 95 indicates, not only the current activation state of the loads and scenes, but also indicates the direction of ramping that occurred for the last state update to each load or scene. Based on this information, the system manager 74 determines a direction for ramping the load or scene if a long press command affecting the load or scene is received. As an example, if a load is not fully activated when a long press command affecting the load is received, the system manager 74 may determine to ramp the load in the same direction that it was previously ramped.
As a mere example, assume that that the light source 411 is deactivated when a first long press command is received via the top button 135 of switching unit 55a. In such an example, the switch manager 111 of unit 55a transmits an input message to the base unit 52 indicating that a long press command has been initiated via button 135. In response, the system manager 74, based on system data 94, determines that the long press command is for controlling the light source 411. Further, based on the component state data 95, the system manager 74 determines that the light source 411 is deactivated. Thus, the system manager 74 transmits a command instructing the switching unit 55a to begin powering up the light source 411 at a specified soft rate, according to techniques described above. When the long press command ends, the system manager 74 transmits another command instructing the switching unit 55a to stop changing the state of the light source 411. Further, the switching unit 55a reports the final state of the light source 411 to the base unit 52, and the component state data 95 is updated by the system manager 74. As an example, assume that the final load level of the light source 411 is 50%. Thus, the system manager 74 updates the data 95 to reflect the current load level of the light source 411. In addition, the system manager 74 stores, in the data 95, information indicating the direction of last change for the light source 411. Since the light source 411 was ramping up (i.e., being changed to higher load levels), the system manager 74 stores data indicating that the light source 411 was being powered up, not down.
Assume that no changes to the state of the light source 411 occur before the next long press command is received via the top button 135 of switching unit 55a. Upon receiving an input command indicating another long press command has been received via button 135 of unit 55a, the system manager 74, based on the component state data 95, determines that the load 411 is currently at a 50% load level and was being ramped up during the last change to its load level. Thus, the system manager 74 transmits a command to the switching unit 55a instructing it to begin ramping the light source 411 in the same direction (i.e., to increasingly higher power levels) relative to the last direction of change. Thus, by tracking the manner in which loads or scenes are changed, subsequent changes to a load or scene can be based on the manner in which the load or scene was previously changed.
In any communication system, particularly wireless communication systems, it is possible for some messages to not reach their intended destinations or for errors in tracking the states of objects to occur. To help ensure that the state component data reflects the accurate state of the system 50, the system manager 74 is preferably configured to query the switching units 55a-h to discover the current states of loads 142 and indicators 655-657. Upon receiving a query, the switch manager 111 of the receiving unit 55a-h retrieves the requested state data from the switch data 189 stored therein and transmits the requested state data to the base unit 52. If the system manager 74 discovers that the state data from the queried switching unit 55a-h is inconsistent with the component state data 95, the system manager 74 may take action to cure the discrepancy. For example, the system manager 74 may transmit a command to the queried switching unit 55a-h and instruct this unit 55a-h to update the state of a load 142 or indicator 655-657 such that the state of this load 142 or indicator 655-657 matches state indicated by the data 95. In another example, the system manager 74 may update the state component data 95. Note that the system manager 74 can periodically query the switching units 55a-h or can query a specific switching unit 55a-h in response to some event.
In addition, the switching units 55a-h have been described above in the context of a lighting system 50 that employs a base unit 52 for controlling the operation of the system 50. In other contexts, the switching units 55a-h may be employed in other types of lighting system, such as mesh lighting systems that do not use a centralized base unit. As an example, if any switching unit 55a-h receives an input affecting the operational state of a remote load controlled by another switching unit 55a-h, the switching units 55a-h may communicate among one another to effectuate the desired state. In such an embodiment, a command for changing an operational state of a local load for one switching unit 55a-h may originate and/or be received from another switching unit 55a-h.
The different embodiments described above have been presented for illustrating various principles of the present disclosure. It would be apparent to one of ordinary skill in the art, upon reading this disclosure, that various modifications can be made to the aforedescribed embodiments without departing from the principles and spirit of the present disclosure.
This application claims priority to U.S. Provisional Application No. (to be determined), attorney docket no. 320306-8010, entitled “Lighting Systems and Methods,” and filed on Aug. 31, 2006, which is incorporated herein by reference.