This invention relates to lighting units.
Lighting units are used in many areas including areas containing explosive gases and vapors (e.g. areas rated as Class 1, Division 2, and Zone 2 areas). A lighting unit typically includes a housing, a lamp attached to the housing, and a transparent or translucent enclosure attached to the housing and surrounding the lamp. Gases and vapors can enter the housing and enclosure through voids in exterior and interior walls of the housing. Also, heat from the lamp can migrate into the interior of the housing. Users often apply sealants to voids in the exterior walls of the housing to prevent gases and vapors from entering the housing and the enclosure.
In one aspect, a lighting unit includes a housing, a lamp fixture configured to be coupled to the housing, an element extending from the lamp fixture and configured to be received in the housing, and a sealing member defining an aperture for receiving the element therethrough. A periphery of the aperture forms a fluid-tight seal around the element.
Implementations may include one or more of the following features. For example, the periphery of the aperture may form a fluid-tight seal around the element by applying pressure around the element. The sealing member may be interposed between the lamp fixture and the housing and may define a second aperture for providing a fluid-tight seal around a second element. The element may include a fastener (e.g., a screw) that attaches the lamp fixture to the housing or a wire that provides electrical energy to the lamp. A sealant, such as room-temperature vulcanized rubber (“RTV”) or high-temperature vulcanized rubber (“HTV”), may be applied around the periphery of the aperture.
An enclosure may be coupled to the housing such that a periphery of the enclosure surrounds the lamp. An enclosure sealing member may be interposed between the enclosure and the housing to provide a fluid-tight seal at an interface between the enclosure and the housing. An attachment member (e.g., a clip) may be used for attaching the enclosure sealing member to the housing, and the housing may define a hole for receiving the attachment member. A sealant may be applied to an interface between the attachment member and the housing.
In another aspect, a lighting unit includes a housing and an enclosure coupled to the housing and configured to define an interior space. The interior space is sealed from an interior of the housing.
Implementations may include one or more of the following features. For example, the housing may define an opening in communication with the interior space and a sealing member, such as a gasket, may be disposed at the interface between the opening and the housing to seal the interior space from the interior of the housing. The lighting unit may include an element passing through the opening and the sealing member may be configured to seal around the element. The lighting unit may include a lamp fixture within the interior space of the enclosure and coupled to the element, and the sealing member may be disposed between the lamp fixture and the housing. The element may include a wire or a fastener, such as a screw, for attaching the lamp fixture to the housing.
The lighting unit may include an enclosure sealing member at an interface between the enclosure and the housing to seal the interior space from an external environment. The housing may define an opening, and the enclosing sealing member may be coupled to an attachment member received in the opening. A sealant, such as RTV or HTV, may be at an interface between the attachment member and the housing to seal the interior space of the enclosure from the interior of the housing. A sealant, such as RTV or HTV, also may be at an interface between the attachment member and the enclosure sealing member to seal the interior space of the enclosure from the interior of the housing.
In another aspect, a method for sealing a lighting unit includes providing a housing, an enclosure coupled to the housing, and an opening in the housing in communication with the enclosure. A seal is placed between the housing and the enclosure, and a sealing member is applied to the opening to seal the opening.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features and advantages will be apparent from the description and drawings, and from the claims.
Referring to
Referring also to
Referring also to
Referring to
Housing 10 defines holes 17 for receiving attachment members in the form of clips 20 that attach gasket 13 to housing 10. Gasket 13 defines clip apertures 60 through which clips 20 are received. Holes 17 and clip apertures 60 provide a potential path through which gases and vapors can pass between enclosure 30 and housing 10. A sealant 27, such as RTV or HTV, is applied at an interface between clip apertures 60 and an interior portion of clips 20 to inhibit gases from entering enclosure 30 through apertures 60. A sealant 29, such as RTV or HTV, is applied at an interface between an exterior portion 72 (
Gasket 12, sealants 21, 25, 27, and 29, and enclosure sealing member 13, individually and collectively inhibit gases or vapors from entering enclosure 30 through holes 15, holes 17, and junction 31, respectively. This reduces the potential for ignition of gases or vapors by lamp fixture 14 or lamp 34. This also inhibits transfer of heat from enclosure 30 to housing 10 such that a T3 temperature rating may be provided inside housing 10. In general, to qualify for a T3 temperature rating, no exposed surface may have a surface temperature in excess of 200° C. Further, this also diminishes the need to apply sealants around conduit entries 22. For example, this eliminates any need for the installer to pour a seal in the conduit line in order to seal the area between wires and the interior walls of the conduit, as was required for prior systems to qualify for a T3 rating.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. For example, the gaskets can have different shapes, such as a square, a triangle, or a hexagon. The gaskets can be made of other materials, such as vulcanized elastomer compounds of natural rubber, reclaimed rubber, synthetic rubber, or rubber like materials, alone or in combination. The sealants can be composed of other types of sealants, such as flowable epoxy sealing compound, epoxy putty sealing compound and elastomeric sealing compounds. In addition, the gasket can be placed inside the housing instead of being positioned between the housing and the lamp fixture. The lamp fixture can have different numbers of wires and/or fasteners and the gasket can have corresponding numbers of apertures to receive the wires and/or fasteners. The lamp fixture can include fasteners other than screws, such as nails, clips, staples, or adhesives. The enclosure sealing member can be attached to the housing by attachment members other than clips, such as screws, nails, staples, or adhesives. The sealing members can inhibit material other than gases and vapors from entering the enclosure. These and other implementations are within the scope of the following claims.
This application is a continuation (and claims the benefit of priority under 35 U.S.C. §120) of U.S. patent application Ser. No. 12/641,619, filed Dec. 18, 2009, now allowed, which is a continuation U.S. patent application Ser. No. 11/940,670, filed Nov. 15, 2007, now U.S. Pat. No. 7,654,694, which is a continuation of U.S. patent application Ser. No. 10/891,448, filed Jul. 15, 2004, now U.S. Pat. No. 7,300,181. The prior applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12641619 | Dec 2009 | US |
Child | 13309840 | US | |
Parent | 11940670 | Nov 2007 | US |
Child | 12641619 | US | |
Parent | 10891448 | Jul 2004 | US |
Child | 11940670 | US |