Field of the Invention
The present invention relates to airborne optical sensors and more particularly to domes used to cover airborne optical sensors.
Brief Description of Related Art
Faceted domes are preferred over single piece domes, such as hemispherical domes or hyper hemispherical domes for use as apertures and for housing airborne optical sensors, such as infrared countermeasure systems in order to keep costs down. Basically, faceted domes are a lower cost solution over the single piece domes. Such domes invariably require protection from direct lightning strikes and from electromagnetic interference (EMI). Such domes may be used to improve performance relative to the RE102 test which is a U.S. Department of Defense Military Standard for magnetic field testing and relative to RE103 which is the U.S. Department of Defense Military Standard for Antenna and Harmonic Outputs.
Existing methods apply a layer of conductive material over the faceted domes to protect any housed electronic circuits from lighting strikes and EMI. However, this may result in significantly reducing optical transmittal properties.
A faceted dome assembly having improved lighting protection and enhanced EMI shielding is disclosed. According to one aspect of the present subject matter, the faceted dome assembly includes a faceted dome and an airborne optical sensor and a gimbal housed in the faceted dome. A conductor disposed substantially within the facets of the faceted dome to provide an enhanced electromagnetic shielding and lightning protection to the electronics in the airborne optical sensor.
The advantages and features of the present disclosure will become better understood with reference to the following detailed description and claims taken in conjunction with the accompanying drawings, wherein like elements are identified with like symbols, and in which:
The exemplary embodiments described herein in detail for illustrative purposes are subject to many variations in structure and design.
The terms “glue”, “bond” and “epoxy” are used interchangeably throughout the document. Also, the terms “optical sensor” and “optical airborne sensor” are used interchangeably throughout the document. Further, the terms “wire cage”, “metal cage” and “metal grid” are used interchangeably throughout the document.
Referring now to
It can be seen in
In some embodiments, the metal cage 200 is made from a wire having a standard wire gauge range, such as American wire gauge (AWG) ranges of about 1-40. In these embodiments, the wire gauge size is chosen to handle a desired current density during EMI and lightning strikes.
Referring now to
In the lightning tests, the faceted dome 100 with the wire cage 200 disposed within the bond lines was conducted and the test results are as follows:
Those skilled in the art will understand from the above test results that the EMI performance of the faceted dome 100 with the wire cage 200 attached at bond lines improved by as much as 40 dB in the 0 to 10 MHz frequency range. It can also be seen from the above test results that the lightning performance was also successful, particularly with a thicker conductor, i.e. with 12 AWG.
The above technique takes advantage of physical characteristics of the faceted domes in order to enhance their EMI shielding and lightning protection without compromising the electro-optical performance. This is accomplished by disposing a metal cage over the faceted dome wedge and/or glue lines to provide the needed shielding to enhance EMI and lightning protection.
The foregoing descriptions of specific embodiments of the present disclosure have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the present disclosure to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the present disclosure and its practical application, to thereby enable others skilled in the art to best utilize the present disclosure and various embodiments with various modifications as are suited to the particular use contemplated. It is understood that various omission and substitutions of equivalents are contemplated as circumstance may suggest or render expedient, but such are intended to cover the application or implementation without departing from the spirit or scope of the claims of the present disclosure.
This Application claims rights under 35 USC §119(e) from U.S. application 61/638,188 filed Apr. 25, 2012, the contents of which are incorporated herein by reference.
This invention was made with United States Government support under Contract No. HSSCHQ-04-C-00342 awarded by the Department of Homeland Security. The United States Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
6433742 | Crawford | Aug 2002 | B1 |
6787696 | Liljevik | Sep 2004 | B2 |
6924772 | Kiernan et al. | Aug 2005 | B2 |
20060221591 | Kong | Oct 2006 | A1 |
Entry |
---|
Defintion of facet by Merriam-Webster. |
Wikipedia Definition of “Antenna”. |
Number | Date | Country | |
---|---|---|---|
20140192507 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61638188 | Apr 2012 | US |