1. Field of the Invention
This invention relates to ladders, to rails used in the manufacture of ladders and, more particularly to molded composite ladder rails.
2. Description of the Prior Art
The use of portable ladders throughout history is well documented. Today, portable ladders are made not only of wood, but of aluminum alloys and composites using a variety of structural fibers.
Usually manufactured from spruce, wood ladders are relatively lightweight and inexpensive. As long as they are dry, they are safe for use around electricity. Wood ladders, though, have a number of drawbacks. Solid (i.e. non-laminated) pieces of wood used in the construction of ladders may have latent defects which can cause a structural failure. Wood is also subject to gradual, debilitating deterioration by moisture, sun, insects and microorganisms. Furthermore, expansion and contraction of wood caused by temperature and humidity changes can result in a gradual loosening of steps and braces, which requires frequent maintenance. Wood ladders also tend to be less stable in larger sizes.
Though aluminum alloys offer a high strength, lightweight alternative to wood, ladders made of aluminum alloys also have a number of drawbacks. Certain chemicals and salt water environments can corrode and weaken aluminum ladders. Although having excellent uniformity in the strength of structural members at the time of manufacture, the rails of aluminum ladders are easily bent and cracked. The most significant drawback is that aluminum is the third-best conducting metal. This attribute makes aluminum ladders extremely dangerous for work anywhere near high-voltage electrical wires. Historically, metal ladders have been the choice when electrical contact is not anticipated. Unfortunately, a ladder coming into contact with an electrical wire often occurs by accident. Therefore, a risk of electrocution may exist even when care is taken to avoid known and visible hazards. The problem is compounded because the light weight and high strength characteristics of metal ladders may be an inducement for their use even when electrical safety is a concern.
Though generally somewhat heavier and more expensive than aluminum ladders of the same size and rating, ladders having fiberglass composite rails joined with aluminum rungs have become extremely popular because they combine the best physical qualities of aluminum and wood ladders. The fiberglass composite rails will not conduct electricity. They are also very corrosion resistant. With minimal care and maintenance, fiberglass ladders can last generations.
Aluminum ladder rails are typically manufactured using an extrusion process. Fiberglass composite ladder rails, on the other hand, are typically manufactured using a pultrusion process. Pultrusion is a technique whereby longitudinally continuous fibrous materials are soaked in a resin bath and pulled through a heated die so that the resin sets and produces a rigid part downstream of the die. Both the extrusion process for aluminum rails and the pultrusion process for fiberglass composite rails produce rails of uniform cross section throughout their lengths.
The greatest weakness of the composite pultrusion and aluminum extrusion manufacturing processes is that the cross-sectional profile of the rail must remain constant throughout its entire length. During use, a ladder rail is subjected to different levels of stress, torque, shear, flex and abuse in different regions along its length. Therefore, if the rail needs more strength in a particular region, material must be added to the entire length of the rail. Thus, a ladder rail of uniform cross section throughout its length is necessarily overly strong and heavy throughout much of its length, while those regions subjected to maximum stress, torque, shear, flex and abuse are designed to be just strong enough to support the maximum rated load—plus an additional safety factor load—without failure, under expected usage conditions. Consequently, all ladders having rails of uniform cross section throughout their lengths are considerably heavier than they need to be. Neither the extrusion process nor the pultrusion process is readily adaptable to the manufacture of rails of non-uniform cross section over their lengths. This non-optimum condition has heretofore been considered acceptable in the interest of minimizing manufacturing costs. Although there has always been an effort to design air and water craft so that no portion of a aircraft, ship or boat is any stronger than it needs to be, in order to minimize unloaded weight and thereby maximize payload and/or performance of the craft, the concept has been largely ignored by manufacturers of ladders.
Today, the need for ladders that are light in weight and that can be safely handled by an individual working alone is of greater significance than the need for ladders which have a low initial purchase price. The purchase price is likely only a tiny fraction of the total costs related to treating and compensating potentially career-ending physical injuries sustained while carrying, loading, unloading, setting up, and taking down a conventional ladder over its useful life. This is especially true when the number of persons working in trades that require the frequent use of a portable ladder, who are nearing retirement age, who have either a small stature or a history of previous injuries related to the lifting and carrying of heavy objects, is taken into consideration. Utility workers, electricians, construction workers and telecommunication installers, in addition to homeowners and those in many other industries, could benefit from the availability of ladders-especially extension ladders-which are significantly lighter than those of the same ratings and sizes currently available.
The present invention provides a process for manufacturing ladder rails of non-uniform cross-sectional area throughout their lengths. Regions of the rails subject to greater stress during usage are reinforced with additional structural fibers and, consequently, have greater cross-sectional area than regions subjected to lesser stress. Although the concept of strength and weight optimization has long been used in the design of air and water craft, the concept is foreign to manufacturers of ladders.
Structural fibers of many types may be used. Use of the following fibers is presently contemplated: glass (types E, S, S2, A or C), quartz, poly p-phenylene-2,6-bezobisoxazole (PBO), basalt, boron, aramid fibers such as Nomex® and Kevlar® (poly-para-phenylene terephthalamide), ultra-high-molecular-weight polyethylene, carbon, graphiteand fiber hybrids such as carbon/aramid and carbon/glass. For ladders used near electrical circuits, non conductive fibers are mandatory. Type E glass fibers have excellent dielectric properties and are the most commonly used structural fiber. However type S and S2 glass fibers have greater strength. Quartz fibers, while more expensie than glass, have lower density, higher strength and higher stiffness than E-glass, and about twice the elongation-to-break, making them an excellent choice where durability is of paramount importance. Boron fibers, which are five times as strong, twice as stiff as steel, and non-conductive, are also ideal for structural fiber reinforcement of ladder rails.
The ladder rails are fabricated using a molding process other than pultrusion. High-pressure injection molding, resin-impregnated fiber molding, compression molding, resin transfer molding, and vacuum-assisted molding are processes which may be used to implement the present invention. High-pressure injection molding is suitable for use with both thermoset and thermoplastic resins. Compression molding is used for thermoset materials, and generally requires an expensive, two-part precision closed mold. A resin transfer molding, or RTM, process is currently considered to be the preferred molding method for quantity production of ladder rails produced in accordance with the present invention. Although originally developed in the mid 1940s, the RTM process met with little commercial success until the 1960s and 1970s, when it was used to produce commodity goods like bathtubs, computer keyboards and fertilizer hoppers. The automotive industry has now used RTM for several decades. Traditional RTM is a fairly simple process: both parts of a two-part, matched, closed mold are fabricated from metal or composite materials. Alternatively, one part of a two-part compression mold is fabricated from metal or composite material, and a second part is fabricated from a compressible rubber material. A dry structural fiber reinforcement, called a preform, is preshaped or layed up and oriented into a skeleton of the actual part. The preform is placed in the mold and the mold is closed. Resin and an initiator compound (catalyst) are metered and mixed in dispenser equipment, then pumped into the mold under pressure through injection ports, from where it follows predesigned paths through the preform. Air in the mold is displaced and escapes from vent ports placed at strategic points in the mold cavity. During this injection stage, the resin wets the fibers. For resins which are cured (i.e., solidified) via cross-linking or polymerization induced by the addition of a chemical initiator to the resin, no heat need be applied to the mold. Some thermosetting resin mixes, on the other hand, must be subjected to both heat and pressure in order to harden. However, even for resins which set up when mixed with an initiator, heat is often applied to the mold to speed up the cross-linking or polymerization process in order to maximize product flow through the mold. Once the molded part develops sufficient green strength to handle, the mold can be opened and the part removed. Green strength refers to the strength of a part before it has completely cured. Typically, when a part is removed from the mold, it is still warm and still reacting. Thus, complete cross-linking or polymerization of the resin occurs after the part is removed from the mold. As molds are generally expensive, parts may be removed from the mold while still green in order to maximize utilization of the mold. With vacuum-assisted resin transfer molding (VARTM) using a vacuum-bagged open mold, the preform is typically wrapped around a mold block. The mold block and preform are enclosed in a sealable bag. Catalyzed resin is introduced on one side of the mold block and air is extracted on the other side. The partial vacuum pulls the resin through the preform to create the part. Once the resin sets up, the completed part is removed from the mold block.
RTM can also be done with thermoplastic resins. In this case, the resin is heated above its melting point and then injected into the mold cavity. The resin wets the fibers and then cools to solidify. Other operations are generally analogous to those described for thermoset resins.
Exemplary ladder rails and the processes which may be used to manufacture the ladder rails will now be described in detail, with the reference to the attached drawing
A molding process, other than pultrusion, is employed to manufacture the strategically structually reinforced rails. Such molding processes include high-pressure injection molding, resin-impregnated fiber molding, compression molding, resin transfer molding (RTM), using rigid closed mold or a combination hard and solf mold, and vacuum-asisted resin transfer molding (VARTM) using a rigid or flexible cover over a one-sided mold.
Using high-pressure injection molding, a structural preform is placed in a mold cavity, the mold closed, and a melted thermoplastic resin or uncured thermoset resin is injected into the mold cavity under high pressure, completely wetting the preform and assuming the shape of the mold cavity. After the injected material cools (in the case of the thermoplastic resin) or cures (in the case of the thermoset resin) and solidifies, the completed part can be removed from the mold cavity.
Using resin-impregnated fiber molding, a controlled amount of thermoset or thermoplastic resin is incorporated into a resin-impregnated structural fiber forms (commonly called prepregs) using solvent, hot-melt or powder impregnation technologies. Prepregs can be stored in an uncured state until used. The prepreg structural preform is placed in a precision closed mold and subjected to heat and pressure. In the case of thermoplastic resin, the resin in the preform melts, wetting the structural fibers. The melted resin fibers or particles assume the shape of the mold. After cooling or curing, a finished part is removed from the mold. In the case of a thermoset prepreg part, the preform is stored in a refrigerator until it is cured in a heated precision closed mold. heated precision closed mold.
Using compression molding, structural fiber layer is sandwiched between two layers of thick resin paste to form a sheet molding compound. A piece of the sheet molding compound is placed in a heated closed mold to which 500 to 1,200 psi of pressure is applied. Material viscosity drops and the sheet molding compound flows to fill the mold cavity. After cure, the mold is opened and the part removed. Though the compression molding process typically uses thermoset resins, it can also be used with thermoplastic resins.
Resin transfer molding (RTM), using a closed mold, is presently considered to be the preferred molding method for quantity production of ladder rails produced in accordance with the present invention. With RTM, both parts of a two-part, matched, closed mold are fabricated from metal or composite material. Alternatively, one part of a two-part compression mold is fabricated from metal or composite material, and a second part is fabricated from a compressible rubber material. After the dry fibers are placed in the mold, the mold is closed and the resin is then injected into the mold to wet the fibers and fill the mold. For thermoset resins, the mold can be heated to acclerate curing of the part, although that is not necessarily required if curing of the resin has been chemically initiated. For thermoplastic resins which are injected as a molten liquid, the injected material is simply allowed to cool to solidify after coating the fibers and filling the mold.
With vacuum asisted resin transfer molding, fiber reinforcements are placed in a one-sided mold and a cover, which may be either regid or flexible, is placed over the top of the mold to form a vacuum-tight seal. When using a flexible cover, which is typically an air impermeable bag, the flexible cover essentially forms the other side of the mold. Catalyzed resin is typically introduced through strategically located ports on one side of the mold, and a partial vacuum is applied to ports located on the the other side thereof. The partial vacuum extracts the air and pulls the resin through the preform to create the part. Once the resin sets up, the completed part is removed from the mold. Polyester; two-part epoxy, bismaleimide and polyetheramide resins are commonly used in the RTM and VARTM processes.
Referring now to
Referring now to
Referring now
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
It should be understood that the multi-layered preform of
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
A discussion of resin matrices is in order, as the invention may be implemented using a variety of different resin matrices. There are basically two kinds of polymeric resins: thermosetting and thermoplastic resins. Certain types of resins are available in both formulations.
Unsaturated polyester resins are extensively used because of their ease of handling, good balance of mechanical, electrical and chemical properties, and relatively low cost. Typically used in combination with glass fiber reinforcements, polyester resins are most commonly used in compression molding and resin transfer molding. Several basic types of polyester resins are available, including orthopolyester resins, isopolyester resins and terephthalic polyester resins, with the latter type exhibiting increased toughness. Vinyl ester resins provide enhanced performance, as compared with polyester resins, but at additional cost. However, vinyl ester resins do not match the performance of high-performance epoxy resins. For advanced composite matrices, the most common thermosetting resins are epoxies, phenolics, cyanate esters, bismaleimides (BMIs), and polyimides. Most commercial epoxies have a chemical structure based on the diglycidy ether of bisphenol A or creosol and/or phenolic novolacs. Phenolics are based on a combination of an aromatic alcohol and an aldehyde, such as phenol combined with formaldehyde. Phenolics are relatively inexpensive and have excellent flame-resistance and heat absorbtion properties. Cyanate esters are high in strength and toughness, absorb little moisture, and are excellent dielectrics. Bismaleimides and polyimide resins are used in high-temperature applications. Polybutadiene resins are excellent dielectrics, resistant to chemicals, and may be used in many applications as an alternative to expoxy resins. Polyethermide thermoset resins, which are derived form bisoxazolines and formaldehyde-free phenolic novolacs, are a cost-effective alternative to eepoxy and bismaleimide resins.
A non-exhaustive list of commodity thermoplastic resins includes polyethylene (PE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycarbonate (PC), acrylonitrile butadiene acrylate (ABS), polyamide (PA or nylon), and polypropylene (PP). High-performance thermoplastic resins, such as polyetheretherketone (PEEK), polyetherketone (PEK), polyamide-imide (PAI), polyarylsufone (PAS), polyetherimide (PEI), polyethersulfone (PES), polyphenylene sulfide (PPS) and liquid crystal polymer (LCP), withstand high temperatures, do not degrade whtn exposed to moisture, and provide exceptional impact resistance and vibrational damping. These characteristics make them useful for the manufacture of ladder rails.
Cyclic thermoplastic polyester has excellent fiber wetting characteristics and offers the properties of a thermoplastic and the processing features of a thermoset.
Both polyimide and polyurethane resins are available in both thermoset and thermoplastic formulations.
It should be apparent that a rail may be fabricated in accordance with the present invention for use with a folding step ladder. U.S. Pat. No. 4,718,518 to William E. Brown (the '518 patent) discloses a convertible step ladder having a two-piece back section. This patent is hereby also incorporated by reference into the present application. A lower piece of the back section is removable so that the step ladder can be used on stairs as well as on a flat surface. Composite or fiberglass rails may be molded in accordance with the present invention for use with either a conventional step ladder having a one-piece back section or for a convertible step ladder. The rails may be reinforced in appropriate locations, such as the foot of the rail, the top of the rail where it is hinged, or an attachment region for a removable lower piece of the back section. It should be understood that different types of steps may be incorporated into any of the types of ladders discussed herein. Various method for attaching steps to the rails may also be used. For example, step may be swedged or welded to a bracket which is attached with rivets or screws to the rail. Alternatively, a hole may be cut or stamped in the rail, and an end of the step inserted within the hold and held in place with swedged retaining rings. The types of steps to be used and the method of their attachment to the rail fall largely outside the scope of this disclosure, as may types of steps and many methods of step-to-rail attachment are well known in the art and may be applied to the art of ladder manufacture using the rails of the present invention. That is to say that the practice of the present invention is not limited to any particular type of step or any particular method of step-to-rail attachment.
It should also be evident that the preforms used to make the rails of the present invention may be completely formed prior to their insertion in the mold, or they may be constructed by laying up multiple layers, which may even be done manually within the mold.
Although only several embodiments of the invention has been shown and described, it will be obvious to those having ordinary skill in the art that changes and modifications may be made thereto without departing from the scope and the spirit of the invention as hereinafter claimed.