This disclosure relates generally to systems and methods for making composite parts. In particular, systems and methods of manufacture are disclosed for composite utility pole structures including, but not limited to, pole structures for power distribution and communications.
In this specification where a document, act or item of knowledge is referred to or discussed, this reference or discussion is not an admission that the document, act or item of knowledge, or any combination thereof, was at the priority date, publicly available, known to the public, part of common general knowledge, or otherwise constitutes prior art under the applicable statutory provisions; or is known to be relevant to an attempt to solve any problem with which this specification is concerned.
Embodiments of the present disclosure relate to protecting the environment from soil contamination due to creosol, or other substances, leaching from current wood technology utility poles, while providing a significantly lighter weight pole utilizing composite materials, and greater service life. For example, typical coatings can include creosote (an OSHA restricted carcinogen), pentachlorophenol (an EU banned substance), copper naphthenate (a substance with indoor use restrictions), and chromate copper arsenate (an EPA restricted substance).
Over time partially buried creosol impregnated wood utility poles leach hazardous creosol, and other potentially harmful substances, into the soil because of things like changing soil moisture and temperatures. Likewise, steel and cement poles can leach harmful substances into the soil. Utility companies in states with soil contamination regulations are required to monitor the soil around these poles, and remove the poles when, for example, the creosol in the soil exceeds the requirements. Some utility companies are replacing over 5,000 poles per year due to soil contamination.
Typically, the overall service life of current technology wood utility poles is limited to 20-50 years, based on, among other things, the exposure to the outdoor environments where the poles are installed. The seasonal moisture and freeze-thaw cycles remove the creosol from the wood, and, thus, the poles crack and split requiring replacement.
As the service life on the current wood poles is exceeded, and replacement is required, there can be issues with access to the wood poles for heavy removal equipment. Because some poles are located in densely populated areas, structures and buildings may have been constructed adjacent to the utility poles significantly limiting access for heavy equipment. To remove poles with limited access, helicopters are required since the wood poles can weigh approximately 800-1200 pounds each, and steel and concrete poles can weigh more than wood poles. Additionally, wood poles require the growing and logging of timber of sufficient size, a time-consuming and relatively costly enterprise.
Furthermore, current technology creosol impregnated wood poles are susceptible to catch fire when the power line fails or short-circuits, or when forest fires occur. Likewise, wildlife, such as woodpeckers, rodents, beavers, termites, and others, can damage wood poles. Fumigation, pesticides, soil treatments, and other chemical schemes to alleviate wildlife or insect damage, are potentially environmentally dangerous as well. Other drawbacks, disadvantages, and inconveniences of existing systems and methods also exist.
Accordingly, disclosed systems and methods address the above-noted, and other, issues of existing systems and methods. For example, the presently disclosed systems and methods provide stronger, lightweight alternatives to the wood, cement, and steel poles used today that do not require heavy service cranes, or multiple boom trucks, to deploy.
The presently disclosed composite materials are substantially impervious, or at least resistant to the effects of moisture, and leach no hazardous materials in the soil. Therefore, the need to replace poles due to contaminated soil has been substantially lessened, or eliminated. In addition, the creep strength characteristics of the disclosed composite materials are a significant improvement over wood, and therefore the composite pole does not experience permanent-set due to the constant loading from the utility equipment, power lines, guy-wires, and the like. The disclosed composite laminate design, or helical winding angles, have been optimized with a higher percentage of low angle (5° to 30°) helicals to efficiently react the high bending loads at the base of the pole.
In addition, the disclosed composite fiber and resin materials are not effect by the weather, and therefore the service life is greater than 50 years for the disclosed composite utility poles. Further, the lighter weight of the disclosed composite utility poles allows for the removal and erection of the composite poles without heavy lifting equipment. The reduced weight composite utility poles are also easier and cheaper to store and transport to job sites, or the like.
In addition, the presently disclosed poles may be manufactured from non-flammable materials, making the utility pole fire resistant. The disclosed materials of the composite utility poles are less likely to ignite under the environments of a short circuit or power line failure.
Additionally, the disclosed composite poles may be directly buried and do not require chemical coatings or ground pre-treatment. The disclosed composite poles are also resistant to wildlife, insect, and the like, damage.
The present disclosure relates generally to embodiments of a light weight utility pole that does not contaminate the soil surrounding the pole with creosol throughout the life time of the pole. Because of the selected materials used in the manufacture of the composite utility pole with composite eco-conscious basalt fiber and pine based resin system, the disclosed embodiments are resistant to chemical migration of hazardous materials into the surrounding soil. The design of the composite utility pole and materials addresses the need to remove the utility pole and extends its service life. In addition, since the presently disclosed materials are non-combustible, the pole will not catch fire during a power failure or short-circuit event.
Presently disclosed embodiments provide a lighter weight utility pole that can be installed, or removed, without the use of heavy equipment, in locations that are restrictive and have limited access. A majority of the current technology utility poles in service are creosol impregnated wood poles that weight over 1000 pounds. When these poles need to be replaced due to environmental issues, in limited access locations, a helicopter must be employed. The lighter weight of presently disclosed embodiments of utility poles allows for the removal and erection of the composite poles without heavy lifting equipment.
Another disclosed embodiment includes a plurality of nested, tapered cylindrical multi-part poles (e.g., three sections for a 40 foot pole) that can be hand carried into limited access locations and erected by two men without heavy equipment. Other features, advantages, and conveniences of the disclosed systems and methods also exist.
Accordingly, disclosed embodiments include a hollow tapered composite utility pole including a plurality of fibrous rovings reinforcing a plastic matrix forming a hollow pole having an interior surface and an exterior surface and further having a narrow end, a wide end, and a taper portion extending between the narrow end and the wide end.
Further disclosed embodiments have a first bevel on the exterior surface of the pole at the narrow end, a second bevel on the interior surface of the pole at the wide end, and the first bevel and the second bevel are configured to couple and allow poles of varying sizes to be mated. In still further disclosed embodiments a chemical bonding agent is applied to at least one of the first bevel or the second bevel to couple the first bevel and the second bevel and to form a larger pole of modular construction.
In disclosed embodiments the plurality of fibrous rovings are applied 100-240 at a time. In further disclosed embodiments, the plurality of fibrous rovings are applied simultaneously and in a circumferential, manner to the longitudinal axis of a forming mandrel.
Also disclosed are methods of manufacturing a tapered composite utility pole, the method including ring winding a plurality of fibrous rovings reinforcing a plastic matrix to form a hollow pole having an interior surface and an exterior surface and further having a narrow end, a wide end, and a taper portion extending between the narrow end and the wide end.
In further disclosed embodiments the method includes applying the plurality of fibrous rovings 100-240 at a time, and simultaneously and in a circumferential, manner to the longitudinal axis of a forming mandrel.
In further disclosed embodiments, the method includes forming a first bevel on the exterior surface of the pole at the narrow end, forming a second bevel on the interior surface of the pole at the wide end, and wherein the first bevel and the second bevel are configured to couple and allow poles of varying sizes to be mated. In still further embodiments, the method included chemically bonding at least one of the first bevel or the second bevel to couple the first bevel and the second bevel and to form a larger pole of modular construction.
While the disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. Rather, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
For a more complete understanding of the present disclosure and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numerals represent like parts. The various embodiments disclosed herein are by way of illustration only and should not be construed in any way to limit the scope of the disclosure. Those skilled in the art will understand that the principles of the present disclosure may be implemented in any suitably arranged composite utility pole that is resistant to chemical migration of hazardous materials into the surrounding soil. As disclosed herein, the notational representations of cross sectional geometry presented are not intended to limit the configuration and wall thickness of the composite cylinders in embodiments of the present disclosure.
The composite materials selected for the manufacturing of the presently disclosed utility poles 1 provide many benefits. The disclosed, eco-conscious basalt fiber and pine based resin system are not only low cost, but provide, among other things, the following benefits: 1) a composite laminate which is resistant to chemical migration of hazardous materials into the surrounding soil; 2) non-flammable fiber and resin resulting in fire resistance; 3) improved material creep strength and reduced permanent-set from constant loading; 4) improved material dielectric constant increasing the electrical insulation capability of the pole; and 5) significant reduction in weight allowing the utility poles to be installed without heavy lifting equipment.
Embodiments of the composite filament winding manufacturing approach utilize a high production rate Ring or Spiral Filament Winding Machine.
In an exemplary embodiment, a utility pole 1 in accordance with a Class 5, forty foot pole, may be manufactured using the herein disclosed materials and methods to create a forty foot composite pole that weighs 251 pounds, is 136% stronger than an equivalent wood pole, and has 50% less deflection at load than an equivalent wood pole. Other advantages also exist.
In some embodiments of the composite utility pole 1, a variant design of a plurality of nested, tapered, cylindrical multi-part poles 1A, 1B, 1C, etc., as shown in
Although various embodiments have been shown and described, the present disclosure is not so limited and will be understood to include all such modifications and variations are would be apparent to one skilled in the art.
This application, under 35 U.S.C. § 119, claims the benefit of U.S. Provisional Patent Application Ser. No. 62/575,889 filed on Oct. 23, 2017, and entitled “Lightweight, Eco-Conscious Composite Utility Pole,” the contents of which are hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62575889 | Oct 2017 | US |