The invention relates to a minimum weight and minimum volume spherical container capable of resisting an internal explosive detonation without rupture due to bombs or other improvised explosive devices (IED's). The invention applies to storage or handling of IED's or explosive materials where a minimum weight and minimum volume storage container is required.
There are many situations where safe handling of explosives is desirable, but the explosive needs to be contained in the lightest, smallest container possible. Robotic devices are becoming a common method to retrieve suspected bombs or explosive materials. In order to minimize the load put on the robot, it is important that any container used for the explosives be as small and light as possible. Similarly, government agencies such as the Department of Defense, Federal Bureau of Investigation, or police departments desire to store explosives in the smallest volume possible to maximize the utility of their facilities. Explosive materials stored in military assets also should take up as little space and add as little weight as possible.
The general case of containers for explosives is covered in a copending application by the same inventor. It is the object of this invention to provide a solution to the special case of blast containment in the minimum weight/volume container
The invention is a spherically shaped blast resistant container, constructed entirely or in part of a blast resistant composite material. In the preferred embodiment, the composite material is a fiber reinforcement in a polymer resin matrix.
In one aspect, the-polymer resin matrix is resistant to galvanic corrosion, solvents and chemical agents and exhibits a high specific strength, high specific modulus, high strain to failure, high fracture toughness and is not hygroscopic.
In another aspect the fiber reinforcement is treated with a special resin compatible sizing which develops a high specific laminate strength, high specific laminate modulus, high laminate strain to failure and a high laminate fracture toughness.
In another embodiment, the composite material is layered to form a laminate. In one version the layering may be accomplished by filament winding a tow of fibers or a collection of fiber tows, in the form of a strip or unidirectional tape, around a hollow spherical tool or mandrel. The winding is performed in a polar fashion to ensure uniform circumferential placement of fiber over the entire surface area of the spherical tool or mandrel.
In one embodiment the container is a blast containment vessel used for robotic handling of improvised explosive devices (IED's).
In another embodiment, the container is a minimum weight and minimum volume blast resistant explosives container for use in a building. In a further embodiment, the container is a minimum weight and minimum volume blast resistant explosives container for use in military assets.
In another embodiment the container may be used specifically for the safe storage of explosive materials in order to protect surrounding personnel and property from an accidental or unanticipated detonation of the explosives stored within the container.
In a further embodiment, in order to avoid personnel and property damage, the invention may be used by police, firemen or demolition teams as a portable container to safely detonate IED's or bombs planted by terrorists.
In a further embodiment, the invention is a method of constructing a blast resistant container, including providing collapsible tools which allow for forming of a sphere containing an opening, providing a tool for fabricating a door or hatch, fabricating and curing the sphere and hatch, and assembling the sphere and hatch into a completed container.
In a further embodiment of the method, the containers are constructed at least in part using a fiber reinforced, polymer resin matrix, composite. In one aspect, the composite container is fabricated by polar winding a resin immersed fiber tow around a spherical tool or mandrel. In another aspect, the composite container is fabricated by polar winding a strip of fiber tows around a spherical tool or mandrel
One embodiment of the invention involves the construction of a blast resistant container utilizing fiber reinforced polymer composite laminate skins in combination with core materials to form a sandwich type construction. Low density core materials may include, opened or closed cell foam, a honeycomb material, nomex, metal foam, or balsa wood. In a further embodiment of the invention, the tool or mandrel for the sphere is collapsible such that when the container is completed, the tool may be removed through a hatchway built into the container. In one embodiment the tool is inflatable, and may be removed upon curing by deflation.
In another embodiment, a non-circular doorway opening may be cut out from the side wall and an oversized doorway hatch may be inserted inside the container. The interior hatch is self sealing against the wall of the sphere by the internal overpressure developed by the explosive detonation.
The detailed description of how to make and use the invention will be facilitated by referring to the accompanying drawings.
The inventor has produced a completely new concept for blast protection containers, enabled in part by employing very different materials than currently used for container applications. Current container materials such as thin aluminum or steel provide little or no blast protection. Conventional materials exhibit relatively low specific strength and/or specific modulus. Consequently, blast resistant containers constructed using conventional materials do not offer a weight efficient solution. A new class of materials enables a different approach. Such materials are similar to fiberglass in that they utilize a reinforcing fiber architecture, which is surrounded by a polymer resin matrix. The most effective version of composite construction utilizes materials which exhibit high compressive and tensile specific strengths and high compressive and tensile specific moduli. Specific strength is defined as the ultimate compressive (or tensile) strength of the material divided by its density. Specific modulus is the elastic compressive (or tensile) modulus of the material divided by its density. The polymer resin matrix is resistant to galvanic corrosion, solvents and chemical agents. The inventor has developed a particularly suitable version of the material, described in a co-pending application. In this version, the fiber reinforcement is treated with a special resin compatible sizing which develops a high specific laminate strength, high specific laminate modulus, high laminate strain to failure and high laminate fracture toughness. These materials have much higher resistance to blast per unit volume than metals.
Referring to
A blast resistant composite for containers can be fabricated as follows. A lay-up tool or mandrel in the shape of the container is required. For the case of a sphere, the tool must be removed from the interior of the container after the container is fully cured. A spherical tool may be achieved by inflating a membrane like balloon in the shape of a sphere or by casting a spherical shape that may be dissolved by water or melted by heat, after the composite winding has fully cured. A suitable fabrication method is described below. A collection of continuous fiber filaments, known as a tow of fibers, is immersed in a resin bath. The wet tow is wound in a circumferential fashion around the aforementioned tool or mandrel. The reinforcement tow is continuously wrapped around the tool (mandrel) in multiple angles around the sphere until the required laminate thickness is achieved. The winding is vacuum bagged using a compressor to draw vacuum. A Convection Oven or Autoclave is used for curing the bagged winding. The Oven consists of insulated walls and a heater with a recirculating forced air blower. The Autoclave is a pressure vessel which permits curing at elevated pressure and temperature.
The composite may also be produced by winding a strip of tows (i.e. unidirectional tape) when the diameter of the spherical tool or mandrel is large in comparison to the width of the tape. This permits a greater deposition rate of reinforcing fiber onto the tool or mandrel which results in increased production rates, compared to single tow or filament winding. Curing of the winding may be accomplished by oven or autoclave as previously described.
AS shown in
The spherical container is particularly well-suited to robotic explosive handling, since the minimum volume/weight characteristics of the spherical shape minimize the load on the robotic handler. Also, police, firemen or demolition teams may use the invention as a lightweight portable container to safely detonate abandoned or concealed terrorist bombs or IED's. The invention may also be used to safely store explosives where accidental or unanticipated detonation will not damage surrounding personnel or property, such as in facilities, warships or vehicles.
In another approach to creating a blast resistant door, a section of the core material panels 6 is eliminated such that a gap exists between a part of 5 and 7. A doorway opening may be cut out through both layers on the side of the container where the gap was created by the elimination of part of 6. This gap may be used to accommodate a guillotine or sliding door which completely covers an interior footprint larger than the door opening
In order to achieve better resistance to blast, a continuous overlapping application of the composite material over the entire surface area of the tool is desired during construction. Also, in order to achieve minimum weight the tool must be removed from the container once the container is completely cured. A doorway may be left in the container wall, but preferably, to allow for continuous application of reinforcement tows, the doorway should be cut out. As shown in