This application is based on and claims the priority under 35 U.S.C. §119 of German Patent Application 103 30 709.5, filed on Jul. 8, 2003, the entire disclosure of which is incorporated herein by reference.
The invention relates to a lightweight structure such as an outer skin secured to a frame structure of an aircraft body.
Lightweight structures particularly as used in the aircraft technology and in spacecraft technology, frequently comprise an outer skin, the inwardly facing surface of which is reinforced by a frame structure which herein is referred to as a “two-dimensional” stiffening, compared to the entire body which is “three-dimensional”. The aircraft body is constructed of longitudinally extending stringers and circumferentially extending ribs to which the outer skin is secured, whereby the skin is reinforced by the stringers and ribs. In designing such lightweight structures special attention is paid to reducing weight. Further, lightweight structures that are used for different purposes will have different strength requirements and may need to satisfy different fatigue characteristics as well as different tolerances with regard to damages to such structures. Lightweight structures particularly used in aircraft construction must additionally satisfy special regulation requirements with regard to the tolerance characteristics that must be satisfied relative to damages that can occur during use of the aircraft.
Increasing the tolerance against damages or damage tolerance of such lightweight structures can be accomplished in different ways, for example, among other things, by increasing the entire skin thickness, or by providing different skin thicknesses in different locations throughout the lightweight structure so that the skin is thicker in locations exposed to higher loads while the skin is thinner in locations exposed to lesser loads. Strengthening the skin by increasing the thickness of the skin even only locally, increases the weight more than can be tolerated. Another possibility of increasing the skin strength resides in using materials which themselves have improved tolerances against damages. Such materials are disclosed in German Patent Publication DE 102 38 460 A1, which describes metallic laminated materials or fiber composite laminates as are on the market under the Trademark GLARE®.
Fiber reinforced laminated materials have the advantage of a very good tolerance against damages, even though these fiber composite materials have a relatively low density compared to monolithic metallic materials. The term “monolithic” as used herein refers to single layer materials primarily of metals, as opposed to multi-layer laminated materials. Conventional fiber composite materials have, to some extent, static strength characteristics that are not as good as such static strength characteristics of monolithic materials. Due to the lower static strength characteristics of fiber composite materials a weight reduction of the entire lightweight structure is possible only in certain areas which primarily are designed with due regard to the good damage tolerance of these materials. Furthermore, the production of fiber reinforced laminated materials is subject to a substantial effort and expense compared to monolithic sheet metals, due to the needed preparation of thin sheet metal layers for the adhesive bonding with additional prepreg films and due to the necessity of manually positioning and preparing for the following adhesive bonding step. As a result, the production costs for laminated composite materials can be significantly higher than the costs for producing monolithic sheet metals. Noticeably smaller costs are involved in the production of metallic laminated materials without a fiber reinforcement as described in the above mentioned German Patent Publication DE 102 38 460 A1.
In view of the foregoing it is the aim of the invention to achieve the following objects singly or in combination:
The above objects have been achieved according to the invention by reinforcing strips adhesively bonded to the inwardly facing surface of the outer skin between the structural components of the frame structure or framework, such as stringers and ribs, wherein the reinforcing strips are made of a material that has a good tolerance against damages, for example by preventing or at least retarding crack propagation.
The reinforcing strips may be arranged between the inwardly facing surface of the outer skin and the frame components such as stringers and ribs. Thus, the reinforcing strips may extend longitudinally parallel to the stringers or circumferentially parallel to the ribs, or both. Preferably, the reinforcing strips are arranged as a lattice work. The orientation of the reinforcing strips need not run parallel to the ribs or stringers. Rather, the reinforcing strips may preferably be oriented crosswise to the known direction of crack propagation.
The above described arrangement of reinforcing strips improves the damage tolerance of such lightweight structures as an aircraft body skin in that the propagation, for example, of a fatigue crack is slowed down or even prevented in the area of the outer skin. Thus, the outer skin remains serviceable over a longer period of time, particularly where the reinforcing strips form a lattice structure.
It has been found that the improvement of slowing down crack propagation or preventing crack propagation or crack formation is equally achieved for lightweight structures made of laminated materials as well as of monolithic sheet materials. A significant slow down in the crack propagation has been achieved particularly in arranging the reinforcing strips in the above mentioned lattice work that is positioned between ribs and stringers of the aircraft body frame. More specifically, it has been found that the useful life of the lightweight structure can be increased five-fold because of the slow down of the crack propagation in the outer skin. More specifically, the reinforcing strips in the form of so-called “doublers” between two neighboring stringers or two ribs slow down the crack propagation in the outer skin. It has further been found, based on comparing a single layer monolithic sheet metal skin with a multi-layer metallic laminated material both of which are equipped with reinforcing strips according to the invention and formed as a lattice structure, that the propagation of fatigue cracks is significantly reduced in the laminated material if the fatigue cracks have an initial length corresponding to the spacing between two neighboring stringers. On the other hand, the crack propagation is noticeably higher in the laminated materials than in the monolithic sheet metal skin if the fatigue crack has a length of up to twice the spacing between two stringers.
The advantages of the invention are seen in a weight reduction, particularly in aircraft body skin shells which must have high damage tolerances. These tolerances are particularly significant in the shells forming part of the upper portion of an aircraft body. According to the invention using additional reinforcing strips made of a damage tolerant material, a weight reduction is possible to a significant extent because it is now possible to reduce the thickness of the sheet metal skin by about 20% compared to conventional skin thicknesses of sheet metal skins. Such a 20% reduction in sheet thickness results in a significantly reduced weight of the lightweight structure.
In order that the invention may be clearly understood, it will now be described in connection with example embodiments thereof, with reference to the accompanying drawings, wherein:
Referring first to
The improved retardation of the crack propagation that has been achieved according to the invention is described below with reference to
In each of
In all embodiments shown in
As shown in
The outer skin 2, 12, 22 and 32 may be made of monolithic sheet metal layers of aluminum alloys, or titanium alloys, magnesium alloys or these outer skins may be laminated materials of two or more plies that are adhesively bonded to each other and if necessary may be individually reinforced by intermediate layers of sheet metal. Any lightweight structure may be constructed of several different layer and several lattice works LW for reinforcement.
Although the invention has been described with reference to specific example embodiments, it will be appreciated that it is intended to cover all modifications and equivalents within the scope of the appended claims. It should also be understood that the present disclosure includes all possible combinations of any individual features recited in any of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
103 30 709 | Jul 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3058704 | Bergstedt | Oct 1962 | A |
3401025 | Whitney | Sep 1968 | A |
4052523 | Rhodes et al. | Oct 1977 | A |
4411380 | McWithey et al. | Oct 1983 | A |
4500589 | Schijve et al. | Feb 1985 | A |
4615733 | Kubo et al. | Oct 1986 | A |
5106668 | Turner et al. | Apr 1992 | A |
5151311 | Parente et al. | Sep 1992 | A |
5352529 | Scanlon et al. | Oct 1994 | A |
5429326 | Garesché et al. | Jul 1995 | A |
5498129 | Dequin et al. | Mar 1996 | A |
5667866 | Reese, Jr. | Sep 1997 | A |
5804278 | Pike | Sep 1998 | A |
5895699 | Corbett et al. | Apr 1999 | A |
5902756 | Aly et al. | May 1999 | A |
6114050 | Westre et al. | Sep 2000 | A |
6119742 | Maeng | Sep 2000 | A |
20040075023 | Assler et al. | Apr 2004 | A1 |
20050112347 | Schmidt et al. | May 2005 | A1 |
Number | Date | Country |
---|---|---|
102 38 460 | Mar 2004 | DE |
0 783 960 | Jul 1997 | EP |
0 900 647 | Mar 1999 | EP |
0 573 507 | Jan 2000 | EP |
1 393 893 | Mar 2004 | EP |
WO9212856 | Aug 1992 | WO |
WO9215453 | Sep 1992 | WO |
WO9725198 | Jul 1997 | WO |
WO9853989 | Dec 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20050112348 A1 | May 2005 | US |