Lightweight vehicle frame construction using stiff torque boxes

Information

  • Patent Grant
  • 6299240
  • Patent Number
    6,299,240
  • Date Filed
    Thursday, May 18, 2000
    24 years ago
  • Date Issued
    Tuesday, October 9, 2001
    23 years ago
Abstract
A stiff torque box is used with frame rail segments to compose a vehicle frame. The stiff torque box is used to cross-link the left hand and right hand sides of a vehicle frame and is made up of an extruded aluminum skeleton which forms a number of internal cavities, as well as connecting tabs. The connecting tabs are used to fix the frame rail segments to the stiff torque box. Implementing stiff torque boxes in vehicle frame construction allows for more rigid vehicle frames with the advantage of additional weight savings. This construction is ideal for aluminum frame, front wheel drive and body on frame vehicles. Because of the characteristics of such a vehicle frame, opportunities arise to implement other weight conservative vehicle components.
Description




FIELD OF THE INVENTION




The present invention relates generally to vehicle frames and more particularly to frame structures which improve cost, weight and stiffness of vehicle frames.




SUMMARY OF THE INVENTION




Motor vehicle frames are the backbone of a vehicle. It is to such frames that all major components are attached. Among many others, these components include the engine, body, and suspension. The vehicle frame however, not only acts as a backbone supporting critical vehicle systems, it is itself a system. Vehicle frames are exposed to vibration and movement throughout vehicle operation and can be designed to improve the overall driving characteristics of the vehicle. For example, a vehicle frame can be tuned to help dampen the motor vibrations and thus generated noises, which passengers may find annoying. Additionally, the stiffness of vehicle frames may need to be increased or decreased depending on the amount of torsional flexion desired for a particular suspension.




Traditional motor vehicle frames are comprised of a series of metal bars or rails which are connected in a ladder shape. Typically, two larger frame rails running along the length of the vehicle. The two larger frame rails are then connected to a series of smaller cross members which run between the two larger frame rails. The frame rails and cross members are then fastened together.




This traditional method of building vehicle frames allows for limited room to modify features such as stiffness and dampening. To enhance the stiffness of a typical ladder shaped frame, larger, thicker frame rails with heavier attachments are required. This adds significant weight and cost to the vehicle frame. To decrease the stiffness, frame rails with thinner walls are required which results in a weaker frame.




It has been an on-going objective of the automotive industry to reduce both cost and weight of motor vehicles. Reducing the weight of a vehicle works to reduce cost for both the manufacturer and the vehicle owner. Lighter weight vehicles and vehicle components result in less expensive shipping and manufacture costs. In turn, lighter weight vehicles decrease energy consumption thus increasing fuel or battery efficiency (in the case of a battery powered vehicle). The result is a reduction in operation cost for vehicle owners. Traditional motor vehicle frames work against this objective. It is therefore desirable to improve the method by which vehicle frames are constructed and adapted to particular vehicle characteristics.




It is an object of the present invention to meet automobile industry needs in improving cost and weight of motor vehicles, while maintaining vehicle performance characteristics. The present invention achieves this by introducing a stiff torque box, integral to the overall vehicle frame, which has improved stiffness and weight characteristics. The stiff torque box is made from extruded aluminum and is formed to have several cavities within. The stiff torque box also maintains formed areas at each corner which have connecting tabs. These tabs are used to connect frame rails to the stiff torque box.




The stiff torque box is used as a cross-link between the right and left hand sides of the vehicle frame. It is positioned such that the internal cavities run horizontal, being parallel to the ground. Looking from the side, the stiff torque box allows the side frame rail segments to be stepped down from a first plane to a second plane, acting as a diagonal link between the two planes.




Initially, using aluminum, as opposed to steel, provides a substantial weight savings. Additionally, the stiff torque box is formed as such to allow the aluminum structure to maintain the required stiffness. If additional stiffness is required, a reinforcement tube can be introduced into the stiff torque box. Also, by introducing a stiff torque box various other stamped components, typically required, would be eliminated.




The stiffness of a frame, so constructed, would allow for an opportunity to use plastic composite vehicle bodies. This is because the frame would be of adequate stiffness such that the body itself would be less relied upon to offer additional stiffness for the overall vehicle. This allows for even more weight savings through the lighter weight plastic composite body.




Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood however that the detailed description and specific examples, while indicating preferred embodiments of the invention, are intended for purposes of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:





FIG. 1

is a perspective view of a vehicle frame including a rear stiff torque box according to the principles of the present invention;





FIG. 2

is a partial side view of a vehicle frame including a rear stiff torque box according to the principles of the present invention;





FIG. 3

is a schematic view of a vehicle sub-frame according to the principles of the present invention;





FIG. 4

is a perspective view of a complete vehicle frame according to the principles of the present invention;





FIG. 5

is a perspective view of a reinforced front stiff torque box according to the principles of the present invention; and





FIG. 6

is a side view of the reinforced front stiff torque box according to the principles of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




With reference to

FIG. 1

, a schematic view of a frame portion


1


is displayed. The frame portion


1


includes a rear stiff torque box


10


and frame rail segments


12




a,




12




b.


The frame rails may be stamped, extruded, or hydroformed of cast aluminum material. (Box or C channel sections.) The stiff torque box


10


is made from extruded aluminum and defines several internal cavities


14


, best shown in FIG.


2


. The stiff torque box


10


also defines several connecting tabs


16


which are used to connect the frame rail segments


12




a,




12




b


rigidly to the stiff torque box


10


. As is shown, the stiff torque box


10


cross-links the right hand side frame


18


and left hand side frame


20


.

FIG. 2

displays a side view of the above described frame portion


1


. The cavities


14


within the stiff torque box


10


are clearly shown. Additionally, the frame rail segments


12




a,




12




b


slide in between the connecting tabs


16


to attach to the stiff torque box


10


. As can be seen, the upper, rear frame rail segments


12




a


run in a first plane generally parallel to a second plane in which the lower, middle frame rail segments


12




b


run. The stiff torque box


10


serves to diagonally connect the rear and middle frame rails


12




a,




12




b


in their respective planes, as is seen in FIG.


2


. Once in position, the frame rails


12




a,




12




b


are connected via welding, bending, or otherwise fastened to the connecting tabs


16


of the torque box


10


.





FIG. 3

shows a complete sub-frame assembly


2


comprising the rear stiff torque box


10


and a forward stiff torque box


110


, several frame rail segments


12




a,




12




b,




12




c,


and a cross rail


22


. The sub-frame assembly


2


can then be built into a complete vehicle frame assembly


3


, such as shown in FIG.


4


. The complete vehicle frame assembly


3


is built using a similar sub-frame assembly


2


as is shown in FIG.


3


. Front and rear stiff torque boxes


110


are used to attach various frame rail segments


12




a,




12




b,




12




c,


as described above. The torque boxes


10


,


110


are located on opposing ends of the complete vehicle frame


3


. Several cross rails


22


are also introduced extending between middle frame rail segments


12




b


to aid in stiffening the complete vehicle frame


3


. Various upper frame members


24


are connected to the sub-frame


2


to form the complete vehicle frame


3


. Having used stiff torque boxes


10


,


110


in its construction, the thus formed complete vehicle frame


3


allows for a very rigid and stiff frame, while providing savings on both cost and weight versus current production conventional construction aluminum or steel frame.




If added stiffness is required, a reinforcement tube can be introduced into either of the stiff torque boxes


10


,


110


, as is shown in FIG.


5


. The stiff torque box


110


is constructed as described above. A reinforcement tube


30


is introduced into one of the internal cavities


14


defined by the stiff torque box. It should be noted that the reinforcement tube


30


is fixedly attached to the torque box


110


in the cavity


14


(as best shown in FIG.


6


). The frame rails


12




b


and


12




c


are attached to the torque box


110


in the manner as will be described herein.

FIG. 6

is a side view of the stiff torque box


110


as described with the reinforcement tube


30


connected to the torque box


110


by welding. The reinforcement tube


30


allows a cut-out portion


32


to be provided in the stiff torque box


110


in order to accommodate a steering column and other vehicle components without weakening the frame structure.




The front torque box


110


is also provided with a pair of end cap members


110




b


which are welded or otherwise fastened to the extruded portion


110




a


of the torque box


110


. The end cap members


110




b


include a body portion


38


which covers the ends of the extruded body portion


110




a


of the torque box


110


, upper connecting portions


40


which attach to the front frame rail segments


12




c


and lower connecting portions


42


which attach to the middle frame rail segments


12




b.


End caps could be applied to both front and rear torque boxes.




Various other advantages of the present invention will become apparent to those skilled in the art after having the benefit of studying the foregoing text and drawing taken in conjunction with the following claims.



Claims
  • 1. A vehicle frame comprising:a torque box including a skeleton structure which defines a plurality of cavities, said torque box including a pair of upper connecting portions disposed at opposite ends of said torque box and a pair of lower connecting portions disposed at opposite ends of said torque box; and a pair of upper frame rail segments positioned within a common first plane and each connected to a respective upper connecting portion of said torque box; and a pair of lower frame rail segments positioned within a common second plane and each connected to a respective lower connecting portion of said torque box.
  • 2. The vehicle frame according to claim 1, wherein said torque box further includes a pair of end cap members connected to said skeleton structure said end cap members forming said pair of upper connecting portions and said lower connecting portions.
  • 3. The vehicle frame according to claim 1, wherein said torque box is disposed within a third plane which intersects said first and second planes at an angle.
  • 4. The vehicle frame according to claim 3, wherein said first and second planes are generally parallel and vertically offset from one another.
  • 5. The vehicle frame according to claim 1, further comprising a cross-member connected between said pair of lower frame rail segments.
  • 6. The vehicle frame according to claim 1, further comprising a second torque box including an extruded aluminum skeleton which defines a plurality of cavities, said second torque box including a pair of lower connecting portions disposed at opposite ends of said second torque box and connected to said pair of lower frame rail segments, and a pair of upper connecting portions disposed at opposite ends of said second torque box; anda second pair of upper frame rail segments each connected to a respective one of said upper connecting portions of said second torque box.
  • 7. The vehicle frame according to claim 1, wherein said torque box includes a cut-out portion and a reinforcement member fixed to said torque box and extending across said cut-out portion.
  • 8. The vehicle frame according to claim 1, further comprising a reinforcement tube fixed to said torque box within one of said cavities.
  • 9. The vehicle frame according to claim 1, wherein said upper connecting portions and said lower connecting portions include connecting tabs.
  • 10. The vehicle frame according to claim 1, wherein said skeleton structure is made from extruded aluminum.
US Referenced Citations (16)
Number Name Date Kind
3791472 Tatsumi Feb 1974
4673205 Drewak Jun 1987
4892350 Kijima Jan 1990
5174628 Hayatsugu et al. Dec 1992
5320403 Kazyak Jun 1994
5560674 Tazaki et al. Oct 1996
5577797 Takanishi Nov 1996
5660428 Catlin Aug 1997
5685599 Kitagawa Nov 1997
5741026 Bonnville Apr 1998
5897139 Aloe et al. Apr 1999
5947519 Aloe et al. Sep 1999
5951097 Esposito et al. Sep 1999
5992921 Seki Nov 1999
6088918 Corporon et al. Jul 2000
6099039 Hine Aug 2000