Not applicable.
The present disclosure relates to the production of carbon fibers; more specifically, this disclosure relates to the production of lignin based carbon fibers; still more specifically, this disclosure relates to the production of lignin based carbon fibers via treating lignin to prepare a precursor lignin having increased uniformity relative to the lignin prior to treating, and forming carbon fibers from the precursor lignin.
Lignin is an abundant biopolymer on earth. Currently, the pulp and paper industry produces about 50 million tons of lignin annually, and only approximately 2% of this lignin is used commercially. With the implementation of billion-ton initiative for lignocellulosic biofuels, 150 to 300 million tons of lignin-containing biorefinery waste will be generated each year, representing a significant challenge for modern biorefinery. Nevertheless, lignin is a unique biopolymer with high carbon content (up to 60%) and aromatic monomers. This chemical characteristic makes it possible to use lignin to produce carbon fibers. Carbon fibers are lightweight material with excellent mechanical properties and broad applications in sporting goods, automotive, aerospace, wind turbine blades, and other industries. Traditionally, commercial carbon fibers are mostly made of polyacrylonitrile (PAN)
Herein disclosed is a method of producing carbon fibers, the method comprising: (a) treating lignin to produce a precursor lignin having an increased uniformity defined by (i) an increased linear structure as evidenced by an increased percentage of linkages selected from uncondensed β-O-4′ interunitery linkages and/or condensed β-5′ linkages, (ii) a reduced polydispersity index (PDI), and/or (iii) an increased amount of multiple intermolecular hydrogen bonding relative to the lignin prior to treating; (b) forming precursor fibers from the precursor lignin; and (c) subjecting the precursor fibers to thermostabilization and/or carbonization to produce the carbon fibers.
Also disclosed herein are lignin based carbon fibers having: an average diameter of less than or equal to about 1300, 1200, 1100, 1000, 900, 800, 700, 600, 500, or 400 nm; an increased content of pre-graphitic turbostratic structure relative to carbon fibers made in the same manner but without treating the lignin and/or absent the lignin, as evidenced by a distance between interfacial crystallite layers, as measured by dhkl determined by XRD, that is less than or equal to about 0.390, 0.380, 0.370, 0.360, or 0.350 nm; a crystallite size, Lhkl, as measured by XRD, that is at least 20, 30, 40, 50, or 60% greater than a crystallite size of carbon fibers made in the same manner but without treating the lignin and/or absent the lignin; an increased crystallite content, as evidenced by an integration ratio of G and D bands (G/D ratio), as measured by Raman spectroscopy, that is at least 20, 30, 40, or 45% greater than a G/D ratio of carbon fibers made in the same manner but without treating the lignin and/or absent the lignin; and/or a reduced elastic modulus, as measured by nanoindentation, that is at least 30, 40, or 45% greater than a reduced elastic modulus of carbon fibers made in the same manner but without treating the lignin and/or absent the lignin.
For a detailed description of the preferred embodiments of the disclosed processes, reference will now be made to the accompanying drawings in which:
As previously described, lignin is a unique biopolymer with high carbon content (up to 60%), which makes it possible to use lignin to produce carbon fibers. This presents a real opportunity to increase carbon efficiency and cost effectiveness of biorefinery with a market-size compatible strategy. It should also be appreciated that conventionally commercial carbon fibers are mostly made of polyacrylonitrile (PAN). However, PAN has a relatively high cost of about $15/lb. As a bio-renewable, abundant, and low-cost waste, lignin thus has a real opportunity to displace PAN as a carbon fiber precursor to reduce the cost, and promote the broader utilization of carbon fiber in renewable energy generation, auto industry, and the like. Despite the significant potential, the mechanical performance of conventional lignin based carbon fiber remains too low in comparison with petroleum-based carbon fiber, which remains the utilization of lignin for renewable carbon fiber unrealistic. Unlike the homogenous PAN polymer, lignin is an aromatic polymer composed of molecules with different molecular weight (MW), various functional groups, and diverse interunitery chemical linkages. These intrinsic heterogeneities of lignin could account for the poor mechanical performance of lignin based carbon fiber. Several strategies have been developed to address the challenge including: (a) blending lignin with other polymers as plasticizers or carbon nanotube and cellulose nanocrystal functionalized as reinforcement core; (b) chemical modifications by the esterification of lignin phenolic —OH groups (Ar—OH); and (c) identification of new types of natural lignin (e.g., C-lignin in seed coats) with less heterogeneity. However, most of these strategies offer limited enhancement of graphitization and crystallization of carbon fiber, and thus marginal increase of mechanical properties of lignin based carbon fiber. Accordingly, embodiments described herein offer the potential for the biorenewable carbon fiber fabrication from lignin, which represents a major waste stream of bio-ethanol production, as a potential alternative to traditional polyacrylonitrile (PAN)-based fabrication of carbon fiber.
The poor mechanical properties of lignin carbon fiber could be attributed to the high heterogeneity of lignin polymer, and such heterogeneity is inherent with the lignin functionality and the biomass processing. Lignin has diverse chemical linkages, various functional groups, different monomer units, and variations in molecular weights after biomass processing. Each of these factors could impact the mechanical performance of lignin based carbon fibers. In particular, lignin plays essential roles for water transport and mechanical strength of land plants. The formation of lignin involves dehydrogenative polymerization via random radical coupling of monolignols, namely ρ-hydroxycinnamyl alcohols, which results in various functional groups and several interunitary linkages (
Disclosed herein is a method of producing lignin based carbon fibers. As depicted in the
Generally, the precursor lignin produced as described herein has an increased molecular uniformity relative to the lignin prior to treatment. Such uniformity can be evidenced, in embodiments, by an increased linear structure (e.g., as evidenced by an increased percentage of linkages selected from uncondensed β-O-4′ interunitery linkages and/or condensed β-5′ linkages), a reduced polydispersity index (PDI), defined as the ratio of the mass average molecular weight and the number average molecular weight (Mw/Mn), and/or an increased amount of multiple intermolecular hydrogen bonding relative to the lignin prior to treating.
The method of this disclosure can be utilized to fractionate and modify lignin to produce quality carbon fibers. Treating the lignin can comprise fractionation into fractions having different molecular weights, functional groups, and/or interunitery linkages. Forming carbon fibers from the precursor lignin as produced herein in general improves the miscibility and spinnability of lignin, as discussed further in Examples 1-3 hereinbelow. In particular embodiments, the precursor lignin (e.g., a water insoluble fraction obtained via enzyme-mediator system) can be utilized to produce carbon fiber with significantly improved turbostratic carbon structure as revealed by XRD and Raman spectroscopy, as further described in Examples 1-3 hereinbelow. In embodiments, the improvement of carbon structure leads to a significantly improved elastic modulus of the carbon fibers produced from a precursor lignin according to this disclosure. In embodiments, treating the lignin at 100 to provide a precursor lignin having a higher molecular weight, less —OH groups, and/or a more linear structure may contribute to the improved crystallization and mechanical performance of lignin carbon fiber produced via embodiments of the method disclosed herein. Via the herein disclosed process, lignin based carbon fiber with similar elastic modulus to commercial carbon fiber can be produced, paving the path for replacing PAN with lignin in the production of quality carbon fibers.
Other than in the operating examples or where otherwise indicated, all numbers or expressions referring to quantities of ingredients, reaction conditions, and the like, used in the specification and claims are to be understood as modified in all instances by the term “about.” Various numerical ranges are disclosed herein. Because these ranges are continuous, they include every value between the minimum and maximum values. The endpoints of all ranges reciting the same characteristic or component are independently combinable and inclusive of the recited endpoint. Unless expressly indicated otherwise, the various numerical ranges specified in this application are approximations. The endpoints of all ranges directed to the same component or property are inclusive of the endpoint and independently combinable. The term “from more than 0 to an amount” means that the named component is present in some amount more than 0, and up to and including the higher named amount.
The terms “a,” “an,” and “the” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. As used herein the singular forms “a,” “an,” and “the” include plural referents.
As used herein, “combinations thereof” is inclusive of one or more of the recited elements, optionally together with a like element not recited, e.g., inclusive of a combination of one or more of the named components, optionally with one or more other components not specifically named that have essentially the same function. As used herein, the term “combination” is inclusive of blends, mixtures, alloys, reaction products, and the like.
Reference throughout the specification to “embodiments,” “another embodiment,” “other embodiments,” “some embodiments,” and so forth, means that a particular element (e.g., feature, structure, property, and/or characteristic) described in connection with the embodiment is included in at least embodiments described herein, and may or may not be present in other embodiments. In addition, it is to be understood that the described element(s) can be combined in any suitable manner in the various embodiments. As used herein, the terms “inhibiting” or “reducing” or “preventing” or “avoiding” or any variation of these terms, include any measurable decrease or complete inhibition to achieve a desired result. As used herein, the term “effective,” means adequate to accomplish a desired, expected, or intended result. As used herein, the terms “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “include” and “includes”) or “containing” (and any form of containing, such as “contain” and “contains”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps. Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art.
Several chemical characteristics may impact lignin miscibility with guest polymer (e.g., polyacrylonitrile (PAN)), and thus impact the spinnability, uniformity, and carbonization of the carbon fiber products. First, lignin is an aromatic polymer with heavily modified side chains, and a lower phenolic —OH content may promote the better miscibility of lignin with guest polymer (e.g., PAN) and the solvent. Second, lignin has a highly branchy structure, and more uniformity and linear linkages can promote a better mixture with the guest polymer (PAN). Third, commercial residues like lignin (e.g., Kraft lignin) from pulping processes contain molecules with broad molecular weights (MWs). It has been unexpectedly discovered that precursor lignin with more uniform MW may reduce the heterogeneity and thus improve the carbon fiber spinnability and performance. Laccase treatment can reduce the —OH functional group on lignin side chains, and release low MW lignin for bioconversion. It has been discovered that different lignin fractions resulting from enzyme processing as described herein can improve miscibility and carbonization, when mixed with guest polymer (e.g., PAN) for the production of carbon fiber. However, classic laccase treatment leads to limited fractionation of lignin, due to the inadequate electron transfer and penetration of enzyme into the complex lignin structure. Electron mediators can be utilized for delignification in the pulp and paper-making industry. In embodiments according to this disclosure, an enzyme-mediator (e.g., a laccase-mediator) system is utilized for chemical linkage cleavage and fractionation of lignin. The electron mediator enhances the catalysis rate and allows enhanced penetration for the redox potential into the complex lignin structure, both of which result in improved fractionation of lignin.
As noted above, treating lignin to produce precursor lignin at 100 can comprise fractionating the lignin (e.g., raw/untreated lignin) to produce a solvent soluble fraction and a solvent insoluble fraction 100A, as depicted in the embodiment of
Thus, in embodiments, as depicted, for example in
In embodiments, the enzyme-mediator system comprises laccase enzyme and a mediator selected from the group consisting of 1-hydroxy benzotriazolehydrate (HBT), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), acetosyringone, phenol, and combinations thereof. In specific embodiments, the enzyme-mediator system comprises a laccase-HBT system. Treating lignin to prepare precursor lignin 100 by utilizing a laccase-HBT enzyme-mediator system is described in more detail in Example 1 and
Subjecting the lignin to the enzyme-mediator system can comprise producing a buffered solution of the lignin, adding the enzyme and the mediator to the buffered solution of the lignin, stirring for a time period to produce the solvent soluble fraction and the solvent insoluble fraction at 101A, and separating the solvent insoluble fraction from the stirred solution at 102A. The method can further comprise at 102A, precipitating the solvent soluble fraction of the lignin from the stirred solution after separating the solvent insoluble fraction therefrom. The solvent soluble fraction of the lignin or the solvent insoluble fraction of the lignin can be utilized as the precursor lignin at 200, in embodiments.
As noted hereinabove, fractionation can comprise size exclusion and treating lignin to prepare precursor lignin 100 according to this disclosure can comprise utilizing size exclusion to produce a higher molecular weight portion and a lower molecular weight portion at 1006. In embodiments, the lignin subjected to size exclusion at 100B is a raw/untreated lignin. In alternative embodiments, the lignin comprises at least a portion of the solvent soluble fraction or at least a portion of the solvent insoluble fraction of the lignin obtained at 100A.
Size exclusion can comprise any method known to those of skill in the art and with the help of this disclosure to separate a higher molecular weight portion from a lower molecular weight portion. For example, in embodiments, size exclusion comprises at least one selected from dialysis, enzyme-mediator system, water precipitation, and combinations thereof. For example, as described in Example 2 and
In embodiments, quality lignin based carbon fiber can be produced utilizing an enzyme-mediator-based method, as depicted in
In embodiments, a high molecular weight portion (60-70%) is utilized as precursor lignin for carbon fiber production. In embodiments, the high molecular weight portion comprises from about 60 to about 70, from about 50 to about 80, from about 55 to about 75, or greater than or equal to about 40, 50, 60, 70, 80, or 90 weight percent (wt %) of the (e.g., raw/untreated) lignin, and the low molecular weight portion comprises the remaining from about 30 to about 40, from about 20 to about 50, from about 25 to about 45, or less than or equal to about 10, 20, 30, 40, 50, or 60 weight percent (wt %) of the lignin.
In embodiments, the water soluble fraction 20 is utilized for bioconversion at 400 to produce lipids 60. Any suitable bioconversion known to those of skill in the art and with the help of this disclosure can be utilized at 400.
In embodiments, a method of producing carbon fibers can comprise processing lignin via tuning of the hydroxyl groups of lignin with acids, for example, via acidic precipitation. Via such embodiments, interactions between lignin molecules are enhanced and more orientated (e.g., uniform) molecules are formed, which can help lignin align with guest polymer (e.g., PAN) and thereby enhance crystallization and mechanical properties of the resulting carbon fibers. Thus, in embodiments, treating lignin to produce the precursor lignin at 100 comprises subjecting the lignin (e.g., raw/untreated lignin, solvent soluble fraction of the lignin, solvent insoluble fraction of the lignin, higher molecular weight portion, lower molecular weight portion, etc.) to acidic precipitation. Via the acidic precipitation, precursor lignin can be precipitated from a basic solution of the lignin via contact of the basic solution of the lignin with acid, separating the precipitated lignin from the solution to provide a separated precipitated precursor lignin.
As depicted in
In embodiments, subjecting to acidic precipitation can optionally comprising stirring for a time period after 101C and/or prior to 102C. Reducing the pH of the basic lignin solution to a precipitation pH 102C can comprise contacting the aqueous basic solution in which the lignin is dissolved with an acidic solution having an acidic pH to provide a resulting solution, and adjusting the pH of the resulting solution to the precipitation pH. In embodiments, the precipitation pH is less than or equal to about 6, 5, 4, 3, 2, or 1. Separating the precipitated lignin from the remaining solution at 103C can comprise, for example, centrifugation.
As depicted in
As detailed further in Example 3 and with reference to
In embodiments, a method of producing precursor lignin is provided, wherein the precursor lignin is produced as described hereinabove.
In embodiments, the precursor lignin 40 of this disclosure has: a weight average molecular weight in a range of from about 3,000 to about 20,000, from about 1,000, to about 3,000, or greater than, less than, or equal to about 3,000, 10,000, or 20,000 K g/mol. In embodiments, the precursor lignin 40 of this disclosure has a polydispersity index (PDI), defined as the weight average molecular weight divided by the number average molecular weight (Mw/Mn), of less than or equal to 5, 4, 3, 2, or 1. In embodiments, the precursor lignin 40 of this disclosure has a percentage of interunitery linkages selected from uncondensed β-O-4′ interunitery linkages and condensed β-5′ interunitery linkages that is greater than or equal to about 10%, 20%, 30%, 40%, 50%, or 55% .
In embodiments, treating the lignin to prepare the precursor lignin at 100 results in an amount of the precursor lignin that is at least 30, 40, 50, 60, 70, 80, or 85% of the amount of lignin subjected to treating at 100.
A method of forming lignin based carbon fibers according to this disclosure comprises forming precursor fibers from the precursor lignin 200. As depicted in
In embodiments, forming the precursor fibers from the precursor lignin 200 further comprises washing 201A, lyophilizing 202A and/or grinding and/or sizing 202A the precursor lignin prior to and/or subsequent to combining the precursor lignin with the guest polymer at 204A. Washing can comprise washing with water at pH 1, 2, 3, 4, 4.5, 5, 6, or 7.
Forming the precursor fibers from the precursor lignin at 200 comprises electrospinning 205A. By way of example, electrospinning at 205A can comprise an approximately 15% dopes concentration, about 0.25 mL/h feed rate, about 11.5 KV voltage, and a about 17 cm needle-collector distance.
In embodiments, the precursor lignin produced at 100 provides for enhanced spinnability relative to the spinnability of compositions formed in the same manner but without treating the lignin at 100 and/or absent the lignin (i.e., formed from guest polymer without any lignin), the improved spinnability, as evidenced by a narrower diameter distribution of the carbon fibers obtained at 300.
A method of forming lignin based carbon fibers according to this disclosure comprises producing lignin based carbon fibers from the precursor fibers at 300. As depicted in
In embodiments, thermostabilizing 301A comprises thermostabilization in air or oxygen. In embodiments, carbonizing 302A comprises carbonization in nitrogen, or helium. As depicted in
Also disclosed herein are lignin based carbon fibers produced via the method provided herein. In embodiments, the carbon fibers have: an average diameter of less than or equal to about 1300, 1200, 1100, 1000, 900, 800, 700, 600, 500, or 400 nm. In embodiments, the carbon fibers are characterized by an increased content of pre-graphitic turbostratic structure relative to carbon fibers made in the same manner but without treating the lignin and/or absent the lignin, as evidenced by a distance between interfacial crystallite layers, as measured by dhkl determined by X-ray diffraction (XRD), that is less than or equal to about 0.390, 0.380, 0.370, 0.360, 0.350, nm, or 0.340 nm. In embodiments, the carbon fibers are characterized by a crystallite size, Lnki, as measured by XRD, that is at least 40, 50, or 60% greater than a crystallite size of carbon fibers made in the same manner but without treating the lignin and/or absent the lignin. In embodiments, the carbon fibers are characterized by an increased crystallite content, as evidenced by an integration ratio of G and D bands (G/D ratio), as measured by Raman spectroscopy, that is at least 30, 40, or 45% greater than a G/D ratio of carbon fibers made in the same manner but without treating the lignin and/or absent the lignin. In embodiments, the carbon fibers are characterized by a reduced elastic modulus, as measured by nanoindentation, that is at least 30, 40, or 45% greater than a reduced elastic modulus of carbon fibers made in the same manner but without treating the lignin and/or absent the lignin.
The subject matter having been generally described, the following examples are given as particular embodiments of the disclosure and to demonstrate the practice and advantages thereof. It is understood that the examples are given by way of illustration and are not intended to limit the specification of the claims to follow in any manner.
In order to reduce the heterogeneity of lignin and improve the crystallization of carbon fiber, an enzyme-mediator process of this disclosure was utilized to fractionate and derive more uniform lignin for carbon fiber production. As depicted in
The electron mediator both enhanced the catalysis rate and allowed better penetration for the redox potential into the complex lignin structure, both of which resulted in improved fractionation of lignin relative to non-mediated fractionation. A common laccase mediator, HBT (1-hydroxy benzotriazolehydrate), was chosen to build the laccase-mediator system, via fractionation of the raw/untreated lignin into both water-soluble (30.2 wt %) and water-insoluble fractions (69.8 wt %), abbreviating as the soluble fraction and the insoluble fraction subsequently, respectively. The chemical characteristics of each faction were analyzed and the fractions were used to make lignin based carbon fibers.
Chemical analysis with GPC and NMR revealed that laccase-HBT treatment led to fractions with different MW, reduced —OH groups, and changes in chemical linkage frequencies. First, as shown in
Carbon fiber morphology analysis confirmed that lignin fractionation by laccase-HBT system significantly improved the spinnability of lignin based carbon fiber. Lignin based carbon fibers were fabricated from the aforementioned lignin fractions via electrospinning after mixing them with PAN at a weight ratio of 1:1.
As shown in
The improvement of lignin spinnability may have resulted from the enhanced miscibility for the fractionated lignin with PAN.
As shown in
The crystallite carbon structure in carbon fibers was analyzed using both X-ray diffraction (XRD) and Raman spectroscopy. The distances between interfacial crystallite layers (dhkl) calculated from XRD using Bragg's Law were larger than 0.390 nm for all carbon fibers in this Example 1 (
Raman spectroscopy analysis further revealed that laccase-HBT treatment led to the increased pre-graphitic turbostratic carbon in the lignin based carbon fiber. As shown in
XRD analysis further confirmed the improved crystallite size (Lhkl) in the carbon fibers made of fractionated lignin. The crystal structure for different types of carbon fibers was clearly identified with XRD using Scherrer's Equation 1 (
The improved crystallite microstructure features in carbon fiber led to the enhanced modulus and hardness of the carbon fibers made of laccase-HBT processed lignin, in particular, the insoluble lignin fraction. Both reduced elastic modulus and hardness in transverse direction (
Alkali Kraft lignin with low sulfonate content (370959), laccase (from Trametes versicolor, 0.5 U/mg, 38429), 1-hydroxy benzotriazolehydrate (HBT), N,N-dimethylformamide (DMF, 99.8%), and graphite (99% carbon basis) were purchased from Sigma-Aldrich, USA. Polyacrylonitrile (PAN, Mw=150,000 g/mol) was purchased from Pfaltz & Bauer, USA.
Kraft lignin (70 g) was added into a phosphate buffer (P-buffer, 0.2M, pH 7.0) to achieve a lignin concentration of 10 wt %. Laccase was then added into P-buffer with the loading of 15 mg/g lignin, and the HBT was used as mediator at 25 mg/g lignin. The treatment was carried out in a BIOSTAT® A reactor (Sartorius, Bohemia, NY), with the oxygen flow rate at 5 cubic centimeters per minute (ccm), temperature at 50° C., and the stirring speed at 200 rpm. After 48-hour of treatment, the mixture was separated by centrifugation at 25 000 g into water-insoluble and water-soluble fractions. Water-insoluble lignin fraction was then washed with 200 mL of deionized water for three times. Water-soluble lignin fraction was further precipitated into 500 mL of 2 M sulfuric acid and centrifuged again to render the solid phase. After centrifugation and lyophilization, the two fractions of lignin, namely insoluble lignin and soluble lignin, were obtained in powder form.
All lignin samples were acetylated for 13C NMR characterization. NMR spectra were acquired on an Avance III 500 with a HCN cryoprobe. The acetylated lignin (150 mg) was dissolved in 1 mL of DMSO-d6 and placed in a 5-mm Wilmad NMR tube. Chromium (III) acetylacetone (0.01 M) was added into lignin solution as a relaxant. The methyl peak (39.5 ppm) of DMSO-d6 was used as an internal reference. A 90° C. pulse width, a 1.2 s acquisition time, and a 1.0 s relaxation time were used. Data were collected with a total of 15000 scans.
Lignin linkages were analyzed with heteronuclear single quantum coherence spectroscopy (HSQC). The acetylated lignin (150 mg) was dissolved in 1 mL of DMSO-d6 and placed in the aforementioned NMR tube. Adiabatic 2D 1H-13C HSQC spectra were acquired on a Bruker AVANCE 500 MHz spectrometer, and the resultant data were processed with the software of Topspin version 3.2 (Bruker Biospin) with the following parameters: Gaussian apodization in F2 (LB=−0.5, GB=0.001), and squared cosine-bell and forward linear prediction with 32 coefficients in F1.3 The obtained HSQC spectra were then analyzed using software Sparky, and the assignments of lignin linkages (I, II, III, and IV as shown in
These linkages were also presented in lignin oligomers (
where Ix is the integration of the linkage to be calculated, and IIβ, IIIα, IIIIα, IIVβ are the integrations of Iβ, IIα, IIIα, and IVβ, respectively. The above equation indicated that the quantified frequencies represented the relative changes in lignin linkages.
GPC analysis was performed on an OMNISEC system (Malvern Instrument Ltd., Houston, TX). Two Styrene-divinyl benzene (SDVB) columns were used. Column temperature was set at 45° C. DMF/0.02M Ammonium Acetate was used as the eluent at a flow rate of 1.0 mL/min. A viscometer and refractive index detector in the OMNISEC REVEAL system was used to measure the molecular weight. The acetylated lignin was dissolved in DMF at a concentration of 1 mg/mL, and 100 μL of the sample was injected into the GPC system after filtration with 0.45 μm membrane filter (VWR, Houston, TX). Universal calibration with poly(methyl methacrylate) standards were used. The data were processed with OmniSEC 5.12 software.
Both lignin and PAN were grounded to fine powders and passed through 120-mesh screen. The lignin and PAN powders were then mixed at a weight ratio of 1:1 and dissolved in DMF to generate a 15 wt % solution, which was further loaded to a 10 mL syringe with a 22 gauge (inside diameter (i.d.) 0.70 mm, length 38 mm) stainless steel blunt needle (Terumo, Yokohama, Japan). Lignin-PAN precursor fiber was produced using a nanofiber electrospinning unit (Kato Tech Co., Ltd., Kyoto, Japan), similar to that depicted in
The dynamic viscosity of the electrospinning dopes was measured using Malvern Kinexus Pro+ rotational rheometer (Malvern Instruments, Houston, TX) with a 50 mm diameter parallel plate geometry. Sample thickness was 0.5 mm, and the tests were conducted at a constant temperature of 25° C. with the shear rate from 600 s−1 to 0.1 s−1. Five data points were recorded per each decade of shear rate, and three measurements were replicated for each sample. The shear viscosity at 0.1 s−1 shear rate was reported as the results.
Both thermostabilization and carbonization of lignin fibers were performed in a split tube furnace with vacuum system (GSL 1600X, MTI Corporation, Richmond, CA). The conditions for thermostabilization were: heating at atmosphere from room temperature to 250° C. at a heating rate of 1° C./min. After holding for 1 h at 250° C., the furnace was automatically cooled down to room temperature. For carbonization, the thermostabilized fibers were put in the tube furnace, and the tube was then completely sealed. Before heating, the tube was purged with nitrogen gas for three times with vacuum pump purging until 1×10−2 torr. The step was to ensure that no residual oxygen was left in the tube. The flow rate of nitrogen was kept at 240 ccm (cm3/min) during heating. The temperature was increased from room temperature to 1,000° C. with a heating rate of 5° C./min. The holding time at 1,000° C. was 1 h. The yields of carbon fibers are shown in Table 3. The final yield of the insoluble lignin based carbon fiber was slightly improved as compared to that of the raw lignin based carbon fiber, whilst the soluble lignin based carbon fiber had slightly decreased yield when compared with untreated lignin based carbon fiber.
The morphologies of carbon fibers were imaged using a FEI Quanta 600F FE-SEM (FEI Company, Hillsboro, OR). The samples were firstly coated with gold-palladium (10 nm thickness) using a Cressington 208 HR sputter coater (TED PELLA INC., Redding, CA). The working distance was 10 mm, and the accelerating voltage applied was 5 kV. The diameters of fibers were calculated using ImageJ software, by calculating at least 40 different carbon fibers.
SEM images of as-spun fibers made of lignin and PAN are shown in
DSC was performed on the thermostabilized precursor fibers using DSC Q2000 system (TA Instruments, New Castle, DE) with three heating cycles. Three milligram of sample was placed in an aluminum pan. Under a nitrogen atmosphere, the samples were heated from room temperature to 350° C. at the heating rate of 20° C./min. After cooling down to 0° C. with a rate of 20° C./min, the second cycle and the subsequently third cycle were repeated at the same heating/cooling condition.
The glass transition temperature (Tg) of thermostabilized precursor fibers made of lignin/PAN and pure PAN, represented in
The graphitic structure in carbon fibers was analyzed using Bruker D8 Discovery X-ray diffraction (Bruker, Madison, WI). X-ray resource was generated at 40 mA current and 40 kV voltage with Cu Ka wavelength (A) of 1.542 Å. Diffractograms (
where L is the crystalline size, nm; K is shape factor, set as 0.94 in this calculation; λ is the X-ray wavelength (1.542 Å); β is the full width at half maximum (FWHM) in radian; θ is the Bragg angle in degree.
The distance between two crystalline lattices (dhkl) was estimated using Bragg's law:
2d sin θ=nλ Equation (2)
where d is distance in nm; θ is the Bragg angle in degree; n is set as 1. The results are shown in
For Raman spectroscopy, carbon fibers were briefly ground and then mounted on a double adhesive tape fixed on a glass slide. Raman spectra were taken using a Horiba Jobin-Yvon LabRam Raman Confocal Microscope system with 633 nm laser, 10× magnification of objective lens, D0.3 filter, 200 μm confocal pinhole, 10 s exposure time, and 3 accumulations. Guassian curve fitting was used with Origin 9 software to analyze the obtained Raman spectra.
TGA measurement was carried out using a TA Instruments Q600-SDT system in a nitrogen gas environment (100 mL/min). Thermostabilized precursor fibers were placed in 90 μL alumina crucibles, and heated from room temperature to 1,000° C. with the heating rate of 10° C./min.
Mechanical properties of resultant fibers were measured using Hysitron TI 950 Triboindenter (Minneapolis, MN). Before the measurement, carbon fibers were embedded in an epoxy resin (EPOFIX™ embedding resin kit, Electron Microscopy Science, Hatfield, PA). The resin was polymerized in room temperature overnight. To get a smooth surface for nanoindentation, the resin was firstly polished by a RMC Boeckeler MTX microtome (Boeckeler Instruments Inc., Tucson, AZ) with diamond knife, and continued to polish with a EcoMet 3 grinder/polisher (Buehler, Lake Bluff, IL) using 0.3 pm Alfa alumina powder (Type DX, Electron Microscopy Science, Fort Washington, PA) until fibers can be clearly found on the epoxy resin surface under light microscope.
where Er is the reduced elastic modulus, A is the contact area, and S is the stiffness.
where Ei and Es are the Young's modulus of indenter (1140 GPa) and sample respectively, vi and vs are the Poisson's ratio of indenter (0.07) and sample respectively. An improved reduced elastic modulus thus indicated a potential higher Young's modulus in macroscopic applications.
The hardness (H) was calculated as in equation (5):
where H is given as hardness, Pmax is the maximum force as shown in
In this Example 1, lignin was produced with an efficient enzyme-mediator system to derive fractions that are suitable for producing quality carbon fibers. The electron mediators, such as HBT, can enhance the laccase-based redox reaction to release the small MW lignin and provide a high MW fraction (
First, and without wishing to be limited by theory, the decreased content of —OH group in the fractionated lignin could improve the miscibility of lignin with non-polar solvent and plasticizing polymer, which in turn can enhance the interfacial bonds between polymers. Laccase-HBT treatment resulted in the oxidation of —OH group or ring opening to reduce the phenolic —OH group. The reduced —OH content could enable the better alignment of lignin along the PAN fiber to improve both miscibility and the pre-graphitic turbostratic structure. In addition, —OH can form —C═N—O— linkage with —C═N group in PAN to disturb the cyclization reaction of PAN molecules during carbonization process. The decrease in lignin —OH group thus could benefit carbon fiber in multiple ways to enhance miscibility (
Second, and without wishing to be limited by theory, lignin fractions with different MW could improve the alignment and/or orientation of polymer structure. Low MW lignin often induces non-uniform defects in carbon fiber, as shown in the ‘beads’ structures in
Third, without wishing to be limited by theory, the changes of chemical linkages in lignin might also have an impact on the interaction of lignin with PAN molecules. Theoretically, less branchy and more linear precursor polymers could reduce the entanglement and the voids in fibers, which in turn could benefit the carbon fiber mechanical performance. Dibenzodioxocin (5-5/β-O-4/α-O-4) linkage decreased remarkably when comparing insoluble lignin with both raw lignin and soluble lignin. The β-O-4 bond in dibenzodioxocin (
Overall, the real scientific challenge for lignin based carbon fiber lies in that the voids between polymers would lead to the drastic deterioration of mechanic strength. In contrast to the uniform structure of PAN, lignin is an aromatic polymer with branchy structure and diverse chemical functional groups and linkages. The mixture of PAN and lignin may lead to voids between two polymer molecules to diminish mechanic properties. The aforementioned lignin modification provided by enzyme-mediator fractionation of lignin to provide precursor lignin for carbon fiber manufacture may enhance the interfacial bonding and orientation between lignin and PAN in multiple ways to reduce such voids, thus further increasing the strength of the resulting carbon fiber.
Quality lignin based carbon fibers were fabricated in this Example 1 by utilizing an enzyme-mediator system to fractionate and modify raw lignin. The laccase-HBT treatment not only improved the structure of carbon fiber, but also delivered carbon fibers with similar mechanic performance to PAN-based carbon fiber. The water-insoluble lignin fraction derived from the enzymatic processing had larger molecular weight, less functional groups and more β-O-4 interunitery linkages, and served as a better carbon fiber precursor, although the water-soluble fraction can be utilized as lignin precursor, in embodiments. Mechanical testing showed that the insoluble lignin-derived carbon fiber had similar elastic modulus to commercial carbon fiber. XRD and Raman spectroscopy indicated that the improvement resulted from the enhanced crystallite microstructure in carbon. The mechanistic study demonstrated that fractionation and modification of lignin on its molecular weight, functional groups and structures were pivotal for making quality carbon fibers. The enzyme-mediator method described herein and exemplified in this Example 1 can be utilized to produce lignin based carbon fibers with similar elastic modulus to various commercial products, and thus opened new avenues for replacing the costly petroleum-based carbon fiber precursors with a broadly existing industrial waste. The lignin based carbon fiber can both provide sustainable value-added by-products for biorefinery, pulp and paper industries, and offer renewable and cost-effective alternatives for the broadly used carbon materials.
Experiments were performed to determine if the lower optimal mechanical performance of conventional lignin based carbon fibers is caused by the inherent heterogeneity of lignin and to study how the molecular weights (MW) and uniformity of lignin will impact the performance of lignin based carbon fiber. In this Example 2, lignin was fractionated into fractions with different MW and polydispersity index (PDI). An enzyme-mediator-based method and a dialysis method were developed to derive lignin fractions with increased MW and decreased PDI. Lignin fractions were electro-spun into fibers after blending with polyacrylonitrile (PAN) at 1:1 (w/w) ratio. The fractionation in general improved the spinnability of lignin to allow us to obtain finer lignin based carbon fibers. The elastic modulus of lignin carbon fibers, as measured by nanoindentation, was increased as the lignin MW increased and as PDI decreased. The scatter plot and linear regression revealed very good correlation between the elastic modulus and PDI, as well as certain correlation between the elastic modulus and MW. XRD and Raman spectroscopy revealed that the crystallite size and the content of the pre-graphitic turbostratic carbon were increased with higher lignin MW and lower PDI, revealing the mechanism of the improvement in carbon fiber mechanical performance.
In this Example 2, lignin was fractionated into fractions with different molecular weights and uniformity to see how molecular weight and polydispersity index (PDI) of lignin could impact the mechanical performance of lignin based carbon fiber. In this Example 2, lignin fractions with different MW and PDI were produced by combining enzyme-mediator treatment (e.g., as described hereinabove and with regard to Example 1) and dialysis. Specifically, with reference to
The molecular weight (B) and polydispersity index (PDI in C) of fractionated Kraft lignin (KL) were measured by GPC, and plotted in
As shown in
Morphological analysis of the resultant carbon fibers suggested significantly improved spinnability for the lignin fractions derived from dialysis. Scanning electron microscopy (SEM) analysis was carried out to measure the carbon fiber morphology.
The improved carbon fiber morphology correlated with enhanced mechanical performances as measured by nanoindentation.
Besides molecular weight, PDI is another important consideration for lignin characteristics, indicating the level of uniformity or homogeneity of the lignin molecules. As shown in
To further evaluate the impact of MW and PDI, two more lignin fractions were prepared with similar PDI but different molecular weights. First, 80 w % of KL-L/H-Insol.-12K (lignin with the highest molecular weight) was mixed with 20 w % of KL-Raw (lignin with the lowest molecular weight). The resultant lignin fraction, abbreviated as 80% KL-12K+20% KL-Raw, had similar molecular weight (19,646 g/mol) with KL-L/H-Insol.-6K (
In order to further quantify the impact of molecular weight and uniformity on mechanical performance of lignin based carbon fiber, a scatter plot of elastic modulus vs. MW (
The industrial Kraft lignin (with low sulfonate content, catalog number: 370959) was purchased from Sigma-Aldrich (USA). Polyacrylonitrile (PAN) with molecular weight of 150,000 was obtained from Pfaltz & Bauer, USA. The enzyme (laccase from trametes versicolor, 0.5 U/mg, catalog number: 38429) and other chemicals and reagents used in this research are the products of Sigma-Aldrich (USA).
The enzymatic processing of Kraft lignin was carried out substantially as described in Example 1 above. Briefly, Kraft lignin was treated with laccase (15 mg/g lignin) and 1-hydroxy benzotriazolehydrate (HBT, 25 mg/g lignin) at a 10 wt % concentration for 48 h in a BIOSTAT® A reactor (Sartorius, Bohemia, NY). The oxygen was supplied to lignin solution with a flow rate at 5 ccm. The temperature and the stirring speed were controlled at 50° C. and 200 rpm, respectively. After the treatment, the lignin sample was centrifuged to render water-insoluble and water-soluble fractions. The water-insoluble fraction was washed with 200 mL of iced deionized water for three times before centrifugation and lyophilization for dry lignin powders.
As shown in
Five grams of the water-insoluble lignin fraction from the laccase/HBT processing was dissolved in 100 mL of 0.03 N aqueous NaOH solution. The lignin solution was then transferred into regenerated cellulose dialysis tubes (Fisher Scientific, USA) with 3 500 (3.5K), 6 000-8 000 (6K), and 12000-14000 (12K) nominal molecule weight cutoff, respectively. Lignin was dialyzed against 2 L of MilliQ water for one week with the exchange of fresh MilliQ water every day. The dialyzed was precipitated by adjusting its pH into 2 with 1 M hydrochloric acid solution. After 1 h stirring for completely precipitation, dialyzed lignin sample can be obtained by centrifugation (25 000 g) and lyophilization. The yields of lignin fractions processed by dialysis are 82.0%, 73.0%, and 64.6% for 3.5K, 6K, and 12K cutoff dialysis tubes, respectively.
Before GPC characterization, all lignin samples were acetylated to obtain acetylated lignin. GPC analysis was performed using an OMNISEC system (Malvern Instrument Ltd., Houston, TX). Two D6000 and one T2000 Viscotek D-Columns (Malvern, Houston, TX) were connected in series. Column temperature was set at 45° C. Tetrahydrofuran (THF) was used as the eluent at a flow rate of 1.0 mL/min. RI detector, UV detector (280 nm), and a viscometer installed in the OMNISEC REVEAL system was used for monitoring fractions. The acetylated lignin was dissolved in THF with the concentration of 1 mg/mL, and 100 μL of the samples was injected into the GPC system after filtration with 0.45 μm membrane filter (VWR, Houston, TX). Universal calibration curve was established with polystyrenes as standards.
We observed a significant batch-to-batch difference of molecular weight for the lignin samples. Commercial lignin as a byproduct of pulping mills has unpredictable specifications since numerous process variations like cooking conditions could affect the final production of lignin. Nevertheless, the increment in lignin molecular weight after laccase/HBT treatment was consistent for the same batch of lignin, suggesting the liability of the GPC measurement. The molecular weight (Mn) and PDI of water-insoluble and dialyzed lignin fractions are shown in
Lignin precursor fibers were produced via electrospinning (
Both thermostabilization and carbonization of lignin precursor fibers were conducted in a split tube furnace with vacuum system (GSL 1600X, MTI Corporation, Richmond, CA). The heating processes for thermostabilization and carbonization are shown in
Images for the morphologies of carbon fibers were taken with a FEI Quanta 600F FE-SEM (FEI Company, Hillsboro, OR). The fibers were coated with Au/Pd (10 nm thickness) with a Cressington 208 HR sputter coater (TED PELLA INC., Redding, CA). The working distance was 10 mm, and the accelerating voltage was 5 kV. The diameters of carbon fibers were measured using ImageJ software. The reported diameters were the average data of at least 40 different carbon fibers. The morphologies of carbon fibers are displayed in both
Elastic modulus and harness of carbon fibers were measured with Hysitron TI 950 Triboindenter (Minneapolis, MN). Before the measurement, fibers were embedded in EPOFIX™ epoxy resins (Electron Microscopy Science, Hatfield, PA), and then polished with a RMC Boeckeler MTX microtome (Boeckeler Instruments Inc., Tucson, AZ) and a EcoMet 3 grinder/polisher (Buehler, Lake Bluff, IL). As described in Example 1, the transverse sections of fibers were indented using a Cube Corner (90°) tip with 40 nm radius. The calibration of the tip was performed on a fused quartz standard. The indentation depth was set at 15-20 nm to avoid the effects of substrate (resin) on the measurement. Twenty-five indents were conducted on five different carbon fibers for each sample selected under SPM imaging. The reduced elastic modulus (Er) and the hardness (H) were obtained as described in Example 1 hereinabove. The reduced elastic modulus of this Example 2 is included in Table 5 of Example 1 hereinabove.
The tensile strengths of carbon fiber mats were measured using a load cell configured on a stretching system. For the measurement, fiber mats were cut into pieces with about 3 mm in width and 12 mm in length, and then mounted on paper sheets with slots. The test was performed with the strain rate of 0.06/s and the acquisition rate of 100 Hz. Both force and displacement were recorded. To get a stress-strain curve, the area of fiber mat cross section was calculated as follows:
A
s
=V
s
/L
s
, V
s=ρs/ms (Equation 6)
where As is the area of sample cross section; Vs, Ls, ρs and ms are the volume, length, density and weight of the sample, respectively. All measurements were repeated three times.
Both TGA and DSC were performed on thermostabilized lignin precursor fibers. TGA measurement was conducted using TA Instruments Q600-SDT system (New Castle, DE) under N2 atmosphere (100 mL/min) with the heating rate of 10° C./min from room temperature to 1450° C. DSC analysis was performed using TA Instrument DSC-Q2000 system with two heating cycles under a nitrogen atmosphere. Fibers were heated from room temperature to 350° C. at the heating rate of 20° C./min and then cooled down to 0° C. with a rate of 20° C./min. The second cycle was repeated at the same heating/cooling condition.
The glass transition temperature (Tg) of thermostabilized precursor fibers made of lignin/PAN composite and pure PAN was estimated from the second cycle as shown in
G/D ratio of carbon fiber was analyzed with Raman spectroscopy. A piece of carbon fiber mat was cut and then fixed on a glass slide using double adhesive tapes. Raman spectra of carbon fibers were recorded with a Horiba Jobin-Yvon LabRam Raman Confocal Microscope system using 633 nm laser, 10× magnification of objective lens, D0.3 filter, 200 μm confocal pinhole, 10 s exposure time, and 10 accumulations. The obtained Raman spectra were re-plotted and analyzed with Origin 9 software using Guassian curve fitting.
A Bruker D8 Discovery X-ray diffraction system (Bruker, Madison, WI) was used to analyze the graphitic structure in carbon fibers. X-ray resource was generated at 40 mA current and 40 kV voltage with Cu Ka wavelength (λ) of 1.542 Å. Diffractograms were taken in the 2θ range from 10° to 80°. Scanning step size was 0.05°, and the scanning rate was set at 1.5°/min. The crystalline size (Lhkl) was calculated from Scherrer Equation (1). The distance between two atomic layers in crystal structure (dhkl,
Without wishing to be limited by theory, the mechanism of the improved elastic modulus in high molecular weight and more uniform lignin fractions seen in this Example 2 could result from better lignin spinnability and different carbon structure in carbon fiber. First, the removal of small lignin molecules renders the lignin fractions with increased molecular weight, and improves the spinnability of the electrospinning towards finer fibers (histograms in
Second, the removal of low MW lignin and more uniform lignin molecules could accelerate the formation of crystallite structure in carbon fiber, and thus improve the mechanical performances. X-ray diffraction (XRD) and Raman spectroscopy were carried out to analyze the crystallite carbon structure in carbon fibers. As shown in
In summary, in this Example 2, raw Kraft lignin was fractionated using enzyme-mediator and dialysis into fractions with different molecular weight and PDI to evaluate the impacts of MW and PDI on mechanical performance of lignin based carbon fibers. Removal of small lignin molecules appears to improve the elastic modulus of lignin based carbon fibers. More importantly, the elastic modulus of lignin based carbon fibers correlates well with the PDI. Without wishing to be limited by theory, the mechanistic understanding revealed that higher molecular weight and lower PDI of lignin could lead to the enhanced spinnability of lignin, the increased crystallite size, and the increased content of turbostratic carbon structure in carbon fiber. All of the aforementioned improvements helped to boost the mechanical performance of the carbon fibers. The research highlighted that while higher MW in general enhance the performance of lignin based carbon fiber, molecular uniformity can contribute more to the improved mechanical performance, in embodiments.
Lignin chemical features impact its interactions with guest molecules and crystallite formation in carbonization, and thus carbon fiber mechanical performance. In this Example, experiments were performed utilizing a simple one-pot lignin processing technology that simply precipitate lignin into aqueous acid. This approach is based on manipulating lignin hydroxyl groups, which improves multiple hydrogen bonding and linear chemical linkages to enhance molecular interactions and thereby carbon fiber crystallite structures. Carbon fiber produced via this acidic precipitation technique had elastic modulus comparable with that derived from more costly enzymatic and dialysis fractionation methods, and even traditional PAN-based carbon fibers. Acidic precipitation offers a route to make quality lignin based biorenewable carbon fiber by regulating fiber precursor lignin at the molecular level, which has a broad application in upgrading industrial lignin waste from the paper-making industry and lignocellulosic biorefinery.
Lignin is a polyphenypropanoid polymer with abundant aromatic moieties and C3 side chains, which are formed by dehydrogenative polymerization from three monolignols (
With the poly-aromatic structures, lignin has a carbon content as high as 60%. Moreover, aromatic structures in lignin could help cyclization during the carbonization process. Considering the chemical structure, lignin has significant potential to replace traditional PAN as a cost-effective and sustainable carbon fiber precursor.
As noted above, despite the significant potential, the poor mechanical performance of lignin based carbon fiber as compared to that of PAN-based carbon fiber prevented the commercial application. Examples 1 and 2 demonstrate that chemical characteristics of lignin polymer could account for the low mechanical performance of lignin based carbon fiber. The chemical characteristics include the various interunit chemical linkages (
In this Example 3, experiments were performed to study how functional groups of lignin could impact carbon fiber performance. Considering that the content and type of hydroxyl groups could impact the interaction between lignin and PAN, experiments were performed to study how various types of hydroxyl groups could impact the mechanical properties of lignin based carbon fibers. Lignin contains two kinds of hydroxyl groups, viz phenolic hydroxyl groups (Ar—OH) on C4 position of the aromatic rings, and aliphatic hydroxyl groups (Alk-OH) on Cα and/or Cγ positions of lignin side chains (
As per Examples 1 and 2, enzymatic fractionation can produce more uniform lignin fractions with reduced hydroxyl groups, and the resultant lignin based carbon fiber has increased mechanical performances. However, the results were complicated by more uniform molecular weight and more linear structures in these lignin fractions, both of which could account for the improved mechanical performance of lignin based carbon fiber. To understand how the changes in hydroxyl groups could impact the mechanical properties of lignin based carbon fiber, the further experiments of this Example 3 were performed. Conventionally, attempts to improve carbon fiber performance have been aimed at reducing the content of hydroxyl group through substitution of Ar—OH with other groups via chemical reactions including butyration, acetylation, methylation, propargylation, and other esterification and etherification. Although the miscibility and spinnability of lignin can be improved by these substitutions, the mechanical performances of the resultant carbon fibers had only marginal improvements and are still far from being comparable with PAN-based carbon fiber. The reason could be attributed to the newly formed ‘branchy’ structures by the substitution of Ar—OH. These new branches could hinder lignin alignment with guest plasticizers and thus decrease the crystallization of carbon fiber. Overall, substituting hydroxyl groups with other chemical groups did not significantly enhance the mechanical strength of lignin carbon fiber. This Example 3 provides an approach whereby the profile of hydroxyl groups can be altered for studying the impact of functional groups on carbon fiber performance. In this Example 3, both the challenges in fundamental mechanistic study and the needs for affordable and scalable lignin processing to improve carbon fiber performance have been addressed by developing an acidic precipitation technology. Instead of substituting hydroxyl groups, the acidic precipitation strategy of this Example 3 can be utilized to fine-tune the content and composition of hydroxyl groups to decipher the impact of hydroxyl groups on guest polymer interaction and mechanical properties of the resultant carbon fiber (
Alkali Kraft lignin with low sulfonate content (370959) and N,N-dimethylformamide (DMF, 99.8%) were purchased from Sigma-Aldrich, USA. Polyacrylonitrile (PAN, MW=150,000 g/mol) was purchased from Pfaltz & Bauer, USA. All DMF used in this research was dried over 3 Å activated molecular sieves before use.
Kraft lignin (KL, 2 g) was dissolved in 25 mL of NaOH aqueous solution (1M). pH of lignin solution was adjusted to 12 using the NaOH solution and then kept stirring for 0.5 h at room temperature. Five types of HCL aqueous solutions (150 mL) with pH of 1, 2, 3, 4, and 5 were prepared. Lignin solution was dropwise added into the HCL solution, and then pH values were adjusted again to keep at 1, 2, 3, 4, and 5, respectively. Lignin was precipitated once added into HCL solution. The suspension was then placed in an ice-bath and kept stirring for one more hour, and followed by stirring at room temperature for two more hours. After centrifugation (25 000 g), the samples were washed twice with the acidic water at the same pH and then washed once using the de-ionized water. Lignin powder can be obtained after centrifugation again and lyophilization.
Molecular weight of lignin was measured by GPC using an OMNISEC system (Malvern Instrument Ltd., Houston, TX). All lignin samples were acetylated as reported before the measurement. The conditions for GPC were: column, two D6000 and one T2000 Viscotek D-Columns (Malvern, Houston, TX) connected in series; column temperature, 35° C.; eluent, tetrahydrofuran (THF); flow rate, 1.0 mL/min; detector, RI, UV (280 nm) and a viscometer installed in the OMNISEC REVEAL system; injection volume, 100 μL; sample concentration, 1 mg/mL. Universal calibration curve was established with polystyrenes as standards.
Hydroxyl groups in lignin were analyzed using 31P NMR. Samples were prepared as reported. Briefly, lignin (40 mg) was firstly dissolved in a pyridine/CDCl3 solution (400 μL, 1.6:1, VN). After complete dissolution, relaxation reagent (chromium(III) acetylactonate, 50 μL, 11.4 mg/mL in pyridine/CDCl3) was added into lignin solution, and followed by the addition of an internal standard (cyclohexanol, 100 μL, 10.85 mg/mL in pyridine/CDCl3). Finally, 100 μL of phosphitylation reagent (2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, TMDP) was added. The mixture was kept at room temperature for 30 min to complete phosphitylation reaction before transferring into a NMR tube (5 mm O.D.) for acquisition. Quantitative 31P NMR spectra were recorded under a Varian NMRS-500RM. A 90° pulse with 25-s pulse delay and 256 acquisitions were used to acquire a spectrum.
Hydrogen bonding in lignin was analyzed using a Nicolet 380 FTIR spectrometer (Thermo Electron Corporation, Madison, WI). All lignin and PAN powders were dried two days in a vacuum-drier before measurement. FTIR spectra of all powders were collected using an attenuated total reflection (ATR) stage. Samples were loaded in ATR crystal. All samples were scanned 256 times and acquired at a spectral resolution of 4 cm−1. Peak deconvolution was carried out using Origin 9 software with Guassian curve fitting method.
Lignin interunitary linkages were characterized with HSQC. Acetylated lignin (150 mg) was dissolved in 0.6 mL of DMSO-d6 and placed in a NMR tube. Adiabatic 2D 1H—13C HSQC spectra were acquired on a Bruker AVANCE 500 MHz spectrometer equipped with a Cryoprobe. The resultant data were processed with the software of Topspin version 3.2 (Bruker Biospin) with the parameters described as before. The obtained HSQC spectra were then analyzed using software MestReNova. The assignments and quantification of linkages are shown in Table 9.
The dynamic viscosity of lignin/PAN dopes was measured using a Malvern Kinexus Pro+ rotational rheometer (Malvern Instruments, Houston, TX) with a 50 mm diameter parallel plate geometry. DMF was the solvent for all the dopes. The tests were performed with the shear rate from 600 s−1 to 5 s−1 at a constant temperature (25° C.). Sample thickness was 0.5 mm. For each sample, three data points were recorded per each decade of shear rate, and three measurements were replicated to get an average viscosity.
Lignin was spun into fiber using an electrospinning unit as described hereinabove. Briefly, both lignin and PAN were ground by a mortar and pestle to get fine powders, which can pass a 60 mesh screen. Lignin powder was then blended with PAN powder at a weight ratio of 1:1, and DMF as solvent was subsequently added into this lignin/PAN blend to prepare a spinning dope. The concentration of this polymer blend (lignin and PAN) in DMF was at 15%. Lignin/PAN dopes were loaded in a 10 mL syringe with a 22 gauge (i.d. 0.70 mm, length 38 mm) stainless steel needle. Electrospinning (
As-spun lignin fibers were thermostabilized and carbonized into carbon fibers in a split tube furnace with vacuum system (GSL 1600X, MTI Corporation, Richmond, CA). The thermostabilization (
Reduced elastic modulus (Er) and hardness (H) of carbon fibers were measured using Hysitron TI 950 Triboindenter (Minneapolis, MN). First, carbon fibers were embedded in an EPOFIX™ epoxy resin. The surface of the resin was then polished with a RMC Boeckeler MTX microtome and an EcoMet 3 grinder/polisher (Buehler, Lake Bluff, IL). Second, nanoindentation was carried out, as described in Examples 1 and 2 hereinabove, on transverse sections of fibers (
DSC was performed using DSC Q2000 system (TA Instruments, New Castle, DE) with two heating cycles under a nitrogen atmosphere. Thermostabilized fibers (3 mg) were heated from −90° C. to 400° C. Both heating and cooling rates were 20° C./min.
The morphologies of carbon fibers were observed under a FEI Quanta 600F FE-SEM (FEI Company, Hillsboro, OR). The working distance was 10 mm, and the accelerating voltage applied was 5 kV. Before the observation, samples were coated with gold-palladium (10 nm thickness). The diameters of fibers were calculated from at least 50 different carbon fibers with the help of ImageJ® software.
Carbon fiber mat was mounted on a glass slide, and Raman spectra were taken under a Horiba Jobin-Yvon LabRam Raman Confocal Microscope with 633 nm laser, 10× magnification of objective lens, D0.3 filter, 200 μm confocal pinhole, 10 s exposure time, and 10 accumulations. Guassian curve fitting was used with Origin 9 software to deconvolute D band (1348 cm−1) and G band (1581 cm−1).
Crystallite structure in lignin based carbon fibers was analyzed using a Bruker D8 Discovery XRD (Bruker, Madison, WI). X-ray resource was generated at 40 kV voltage and 40 mA current with Cu Ka wavelength (A) of 1.542 Å. Scanning range (28) was 10°-50°, scanning step size was 0.05°, and scanning rate was 1.5°/min. As described in Examples 1 and 2 above, the crystalline size (Lhkl) was calculated using Scherrer Equation (1). The distance between two crystalline lattices (dhkl) was estimated using Bragg's law Equation (2).
In order to derive lignin with different hydroxyl groups, a novel method was developed to tune the content and composition of functional groups via lignin precipitation in acidic water. Hydroxyl groups impact on two chemical features of lignin: 1) the formation of intramolecular and intermolecular hydrogen bonds; 2) the initiation of chemical reactions for polymerization and depolymerization . The content and composition of hydroxyl groups in lignin thus impact the intermolecular interactions in lignin, the interfacial bonds with guest polymers, and the lignin structure formation and degradation. It has been proposed that intermolecular hydrogen bonds formed between lignin and guest plasticizers could hinder the miscibility of lignin/plasticizer dopes and decrease their spinnability. As aforementioned, strategies have been developed to substitute hydroxyl group to improve mechanical performances of lignin based carbon fiber, yet have led to limited increase of elastic modulus and tensile strength. In order to define the role of hydroxyl groups on the mechanical performance of lignin based carbon fiber, a new acidic precipitation method was utilized in this Example 3 to fine-tune the content and composition of hydroxyl group with a pH-dependent method. The strategy allowed verification of a two-fold hypothesis. On one side, hydroxyl groups may be tuned as described herein to alter the hydrogen bonding network in lignin, changing the intermolecular and intramolecular interaction within lignin and between lignin and guest polymer (e.g., PAN) molecules. The changes of these interactions will enhance the crystallite structure and mechanical properties of lignin based carbon fiber. On the other side, the profile of hydroxyl groups may alter the chemical reactions initiated, change the types of chemical linkages, and regulate lignin interunitary structures accordingly. The changes of chemical linkages, in particular, the condensed lignin structure, can alter the mechanical properties of lignin based carbon fiber. In addition to the fundamental scientific understanding, the acidic precipitation of lignin also represents an economical and straightforward technology that is amenable to scale-up manufacturing of quality carbon fiber.
In order to perform the experiments, all lignin samples were firstly dissolved in same aqueous sodium hydroxide solution (pH=12), and then lignin was precipitated into water at different pH values. Lignin was precipitated with constant yield at approximately 88%, when the pH values of water were 4 and less (pH=4, 3, 2, and 1). Such yield was higher than those from enzymatic fractionation and dialysis methods of Examples 1 and 2, representing a unique advantage of higher lignin recovery for the acidic precipitation method of this Example 3.
The changes in hydroxyl groups after precipitating lignin in water (pH 4-1) were investigated using 31P nuclear magnetic resonance (NMR).
As shown in
First, multiple intermolecular hydrogen bonding between Ar—OH and Alk-OH increased, as the dimeric intermolecular hydrogen bonding decreased after lignin precipitated in acidic water (
Second, the changes in lignin interunitary linkages after precipitation in water at pH 4-1 were determined using 2D HSQC NMR.
Overall, with the precipitation of lignin into water under different acid conditions, lignin hydroxyl groups was tuned with multiple intermolecular hydrogen bonding and condensed interunitary linkages. The major changes in tuned lignin were three-fold. First, for all KL-pH 4, KL-pH 3, KL-pH 2, and KL-pH 1, the multiple intermolecular hydrogen bonds between lignin molecules were increased as the decrease in pH value. Second, for KL-pH 2, β-O-4′ linkage had significant degradation. Third, for KL-pH 1, β-O-4′ linkage had been further degraded, but β-5′ linkage was re-polymerized through condensation. Carbon fibers were fabricated using these tuned lignin samples as precursor lignin to elucidate how the tuning of hydroxyl groups could improve lignin based carbon fiber performances.
Precursor fibers were fabricated using electrospinning after mixing lignin with PAN at a 1:1 weight ratio for spinning dopes. The fibers were then thermostabilized and carbonized to obtain carbon fibers, as described hereinabove in Examples 1 and 2 and with reference to
Without wishing to be limited by theory, the enhanced mechanical performances in lignin based carbon fiber could result from the improved intermolecular interactions and carbon fiber crystallite structure. First, formation of multiple intermolecular hydrogen bonding could improve the intermolecular interactions between lignin and PAN molecules as indicated by miscibility analysis. Glass transition temperature (Tg) of thermostabilized precursor fiber has been widely used to reveal the miscibility of precursor molecules in fibers, where lower Tg indicates better miscibility. As shown in
Second, formation of multiple intermolecular hydrogen bonding and condensed lignin structure could improve the formation of crystallite structure in carbon fiber. The crystallite structure in carbon fiber was referred as pre-graphitic turbostractic carbon, which is directly related to the mechanic performances of carbon fibers. Raman spectroscopy analysis was carried out to measure the turbostractic carbon content. As shown in
In addition to Raman spectroscopy, X-ray diffraction (XRD) was carried out to analyze crystallite size.
The improvement in carbon fibers crystal structures correlated to the enhancement in their mechanical performances, providing the underlying mechanism for how lignin functional hydroxyl groups could impact carbon fiber quality from two aspects. First, as discussed above, formation of more multiple intermolecular hydrogen bonding could align lignin molecules and improve interfacial interactions of lignin with PAN molecules (
Alk-OH on Cγ position of lignin side chain. In fact, Alk-OH on Cγ position contributed to most of the multiple intermolecular hydrogen bonding in lignin. (2) The presence of hydrogen cations could facilitate the formation of multiple intermolecular hydrogen bonding. Lignin hydroxyl groups, in particular, Ar—OH group, and hydrogen cations may form ion-dipole interactions, which could reduce the distances between lignin molecules and facilitate the intermolecular interactions between them (
Second, both β-O-4′ and β-5′ linkages were thought as linear lignin structures. The improvement in β-5′ linkages after condensation (
This Example 3 advances the fundamental understanding of how tuning hydrogen bonding may impact mechanical properties of lignin based carbon fiber, but also delivers an innovative method to modify lignin chemistry for improving carbon fiber performance. The new acidic precipitation technology provides several advantages over previous strategies to modify lignin structure for improving carbon fiber performance. First, the acidic precipitation method of this Example 3 significantly improves mechanical properties of lignin based carbon fiber, as compared to other methods to modify lignin functional groups. As aforementioned, various methods were developed to modify lignin functional groups, yet led to marginal increase of carbon fiber properties. The acidic precipitated precursor lignin significantly increased mechanical properties of the resulting carbon fiber. Moreover, the best elastic modulus from precipitated lignin was even higher than most commercial PAN and pitch-based carbon fiber as measured by nanoindentation (
Overall, Example 3 provides an economical, scalable, and high-recovery technology to modify lignin chemistry for improved carbon fiber properties, and advanced fundamental understanding of how functional groups can be tuned to enhance the interaction between lignin and guest plasticizer. Chemical analyses showed that the tuned lignin had increased aromatic hydroxyl groups (Ar—OH), while lignin structure had more condensed linkages under a relatively high acid concentration (pH 1). Mechanical tests showed that carbon fibers derived from tuned lignin had much enhanced mechanical performances. DSC, XRD, and Raman spectroscopy indicated that the enhancement resulted from the improved intermolecular interactions between lignin and PAN molecules and crystallite turbostractic carbon structures in carbon fibers. The mechanistic study revealed that tuning lignin hydroxyl groups with increased multiple intermolecular hydrogen bonding between lignin Ar—OH and Alk-OH and condensed interunitary linkages enhanced the mechanical performances of lignin based carbon fibers. Understanding of such correlation between lignin chemical structures and carbon material chemistry, in particular tuning hydroxyl groups with carbon fiber crystallite structure, sheds new light on the foundations of lignin based carbon fiber mechanical performances and guides further chemical modifications and designs of lignin molecular structures toward high quality lignin based carbon fiber. In addition to the new method of lignin processing for carbon fiber, the experiments of this Example 3 also present a new concept that modification of lignin polymer at the molecular level can significantly enhance the derived lignin based carbon fiber performances.
The yields of lignin from precipitation, as shown in
GPC results of this Example 3 are depicted in
Two deconvoluted peaks assigned to dimeric intermolecular H-bonding (3520-3505 cm−1,
The assignments and quantification of lignin linkages in 2D HSQC NMR are shown in Table 11.
Viscosity of lignin/PAN dopes at the range of 600 s−1 to 5 s−1 is shown in
Table 5 above shows a comparison of the reduced elastic modulus of the lignin based carbon fibers produced in this Example 3 with the published elastic modulus of commericial carbon fibers as measured by nanoindentation.
Kraft lignin (KL, 250 mg) was dissolved in 2.5 mL of DMF. SWCNT (0.00%, 0.25%, 0.50%, 0.27%, 1.00%, w/w of lignin) were added into lignin solution and then sonicated for 1 h. PAN powder (250 mg) was dissolved in 2.5 mL of DMF. After sonication, the lignin/SWCNT mixture was added into PAN solution to generate a 15 wt % solution. The electrospinning was as described above.
For the purpose of any U.S. national stage filing from this application, all publications and patents mentioned in this disclosure are incorporated herein by reference in their entireties, for the purpose of describing and disclosing the constructs and methodologies described in those publications, which might be used in connection with the methods of this disclosure. Any publications and patents discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.
In any application before the United States Patent and Trademark Office, the Abstract of this application is provided for the purpose of satisfying the requirements of 37 C.F.R. § 1.72 and the purpose stated in 37 C.F.R. § 1.72(b) “to enable the United States Patent and Trademark Office and the public generally to determine quickly from a cursory inspection the nature and gist of the technical disclosure.” Therefore, the Abstract of this application is not intended to be used to construe the scope of the claims or to limit the scope of the subject matter that is disclosed herein. Moreover, any headings that can be employed herein are also not intended to be used to construe the scope of the claims or to limit the scope of the subject matter that is disclosed herein. Any use of the past tense to describe an example otherwise indicated as constructive or prophetic is not intended to reflect that the constructive or prophetic example has actually been carried out.
The present disclosure is further illustrated by the following examples, which are not to be construed in any way as imposing limitations upon the scope thereof. On the contrary, it is to be clearly understood that resort can be had to various other aspects, embodiments, modifications, and equivalents thereof which, after reading the description herein, can be suggest to one of ordinary skill in the art without departing from the spirit of the present invention or the scope of the appended claims.
While various embodiments have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the disclosure. The embodiments described herein are exemplary only, and are not intended to be limiting. Many variations and modifications of the subject matter disclosed herein are possible and are within the scope of the disclosure. Where numerical ranges or limitations are expressly stated, such express ranges or limitations should be understood to include iterative ranges or limitations of like magnitude falling within the expressly stated ranges or limitations (e.g., from about 1 to about 10 includes, 2, 3, 4, etc.; greater than 0.10 includes 0.11, 0.12, 0.13, etc.). For example, whenever a numerical range with a lower limit, RL and an upper limit, RU is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=RL+k*(RU−RL), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . 50 percent, 51 percent, 52 percent, . . . , 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed. Use of the term “optionally” with respect to any element of a claim is intended to mean that the subject element is required, or alternatively, is not required. Both alternatives are intended to be within the scope of the claim. Use of broader terms such as comprises, includes, having, etc. should be understood to provide support for narrower terms such as consisting of, consisting essentially of, comprised substantially of, etc.
Accordingly, the scope of protection is not limited by the description set out above but is only limited by the claims which follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated into the specification as an embodiment of the present disclosure. Thus, the claims are a further description and are an addition to the embodiments of the present disclosure. The discussion of a reference is not an admission that it is prior art to the present disclosure, especially any reference that may have a publication date after the priority date of this application. The disclosures of all patents, patent applications, and publications cited herein are hereby incorporated by reference, to the extent that they provide exemplary, procedural, or other details supplementary to those set forth herein.
The particular embodiments disclosed above are illustrative only, as the present disclosure may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present disclosure. Alternative embodiments that result from combining, integrating, and/or omitting features of the embodiment(s) are also within the scope of the disclosure. While compositions and methods are described in broader terms of “having”, “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. Use of the term “optionally” with respect to any element of a claim means that the element is required, or alternatively, the element is not required, both alternatives being within the scope of the claim.
Numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range are specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. Moreover, the indefinite articles “a” or “an”, as used in the claims, are defined herein to mean one or more than one of the element that it introduces. If there is any conflict in the usages of a word or term in this specification and one or more patent or other documents, the definitions that are consistent with this specification should be adopted.
Embodiments disclosed herein include:
In a first embodiment, a method of producing carbon fibers comprises: forming, via a one pot acidic precipitation, a precipitated lignin from a precipitation solution by contacting a lignin solution and an acid solution, wherein the precipitation solution comprises the lignin solution and the acid solution, wherein the lignin solution comprises lignin dissolved in a basic aqueous solution, and wherein the acidic solution has a pH of less than or equal to about 6, 5, 4, 3, or 2; forming precursor fibers from the precipitated lignin; and subjecting the precursor fibers to thermostabilization, carbonization, or both to produce the carbon fibers.
A second embodiment can include the method of the first embodiment, further comprising separating the precipitated lignin from the precipitation solution by centrifugation.
A third embodiment can include the method of the first or the second embodiment further comprising maintaining a pH of the precipitation solution at a precipitation pH during the precipitating.
A fourth embodiment can include the method of the third embodiment, wherein the precipitation pH is about equal to the pH of the acid solution.
A fifth embodiment can include the method of any one of the first to fourth embodiments, wherein contacting the lignin solution and the acid solution comprises adding the lignin solution, optionally dropwise, to the acidic solution.
A sixth embodiment can include the method of any one of the first to fifth embodiments, wherein precipitating further comprises cooling the precipitation solution, with stirring, and allowing the lignin to precipitate for a precipitation time.
A seventh embodiment can include the method of the sixth embodiment, wherein the precipitation time comprises from about 1 to about 10 hours, from about 1 to about 5 hours, or from about 1 to about 3 hours.
An eighth embodiment can include the method of any one of the first to seventh embodiments, wherein the basic aqueous solution comprises an aqueous sodium hydroxide solution having a pH of greater than or equal to about 10, 11, or 12.
A ninth embodiment can include the method of any one of the first to eighth embodiments, wherein the acidic solution comprises an aqueous hydrogen chloride solution having a pH of less than or equal to about 5, 4, 3, or 2.
A tenth embodiment can include the method of any one of the first to ninth embodiments, wherein the precursor lignin has: a weight average molecular weight in a range of from about 1 to about 20, from about 3 to about 20, from about 1 to about 10, or greater than, less than, or equal to about 20, 10, or 1 K g/mol; a polydispersity index (PDI), defined as the weight average molecular weight divided by the number average molecular weight, of less than or equal to 5, 4, 3, 2, or 1; a percentage of interunitary linkages selected from uncondensed β-O-4′ interunitary linkages and condensed β-5′ interunitary linkages that is greater than or equal to about 10%; an amount of multiple intermolecular hydrogen bonding that is increased relative to the lignin prior to precipitation; or a combination thereof.
An eleventh embodiment can include the method of any one of the first to tenth embodiments, wherein the precursor fibers have improved spinnability relative to precursor fibers formed without precipitating the lignin or absent the lignin, the improved spinnability evidenced by a narrower diameter distribution of the carbon fibers.
A twelfth embodiment can include the method of any one of the first to eleventh embodiments, wherein forming precursor fibers from the precursor lignin comprises: combining the precursor lignin with a guest polymer and optionally single walled carbon nanotubes (SWCNT); and electrospinning to produce the precursor fibers.
A thirteenth embodiment can include the method of the twelfth embodiment, wherein the guest polymer comprises polyacrylonitrile (PAN).
A fourteenth embodiment can include the method of any one of the first to thirteenth embodiments, wherein forming the precursor fibers from the precipitated lignin further comprises lyophilizing the precipitated lignin and/or grinding the precipitated lignin prior to combining the precipitated lignin with a guest polymer.
A fifteenth embodiment can include the method of any one of the first to fourteenth embodiments further comprising: fine tuning hydroxyl groups in the precursor lignin to alter a mechanical property (e.g., reduced elastic modulus, hardness) of the carbon fibers.
A sixteenth embodiment can include the method of the fifteenth embodiment, wherein fine tuning hydroxyl groups in the precursor lignin to alter the mechanical property of the carbon fibers comprises adjusting the pH of the acidic solution and/or the precipitation solution.
A seventeenth embodiment can include the method of any one of the first to sixteenth embodiments, wherein subjecting the precursor fibers to thermostabilization, carbonization, or both to produce the carbon fibers comprises subjecting the precursor fibers to thermostabilization to produce thermostabilized precursor fibers, wherein the thermostabilized precursor fibers have a glass transition temperature, Tg, that is lower than a glass transition temperature of thermostabilized fibers made in the same manner, but without precipitating the lignin or absent the lignin.
In an eighteenth embodiment, carbon fibers produced according to the method of any one of the first to seventeenth embodiments.
A nineteenth embodiment can include the carbon fibers of the eighteenth embodiment, wherein the carbon fibers have: an average diameter of less than or equal to about 1300 nm; an increased content of pre-graphitic turbostratic structure relative to carbon fibers made in the same manner but without precipitating the lignin or absent the lignin, as evidenced by a distance between interfacial crystallite layers, as measured by dhkl determined by X-ray diffraction (XRD), that is less than or equal to about 0.390 nm; a crystallite size, Lkhl as measured by XRD, that is at least 20% greater than a crystallite size of carbon fibers made in the same manner but without precipitating the lignin or absent the lignin; an increased crystallite content, as evidenced by an integration ratio of G and D bands (G/D ratio), as measured by Raman spectroscopy, that is at least 20% greater than a G/D ratio of carbon fibers made in the same manner but without precipitating the lignin or absent the lignin; a reduced elastic modulus, as measured by nanoindentation, that is at least 30% greater than a reduced elastic modulus of carbon fibers made in the same manner but without precipitating the lignin or absent the lignin; or a combination thereof.
A twentieth embodiment can include the carbon fibers of the eighteenth or nineteenth embodiments, wherein the carbon fibers have: a reduced elastic modulus, as measured by nanoindentation, that is greater than or about equal to same carbon fibers produced with pure PAN.
A twenty first embodiment can include the lignin based carbon fibers of claim 18 having an average diameter of less than or equal to about 350 nm.
In a twenty second embodiment, lignin-based carbon fibers are formed by subjecting precursor fibers to thermostabilization, carbonization, or both, wherein the precursor fibers are formed by electrospinning precipitated lignin and a guest polymer, wherein the precipitated lignin comprises lignin precipitated from a precipitation solution, via a one pot acidic precipitation, by contacting a lignin solution and an acid solution, wherein the precipitation solution comprises the lignin solution and the acid solution, wherein the lignin solution comprises lignin dissolved in a basic aqueous solution, and wherein the acidic solution has a pH of less than or equal to about 5, 4, 3, or 2.
A twenty third embodiment can include the lignin-based carbon fibers of the twenty second embodiment, wherein the precursor fibers have improved spinnability relative to precursor fibers formed without precipitating the lignin or absent the lignin, the improved spinnability evidenced by a narrower diameter distribution of the carbon fibers.
A twenty fourth embodiment can include the lignin-based carbon fibers of the twenty second or twenty third embodiment having: an average diameter of less than or equal to about 1300 nm; an increased content of pre-graphitic turbostratic structure relative to carbon fibers made in the same manner but without treating the lignin or absent the lignin, as evidenced by a distance between interfacial crystallite layers, as measured by dhki determined by XRD, that is less than or equal to about 0.390 nm; a crystallite size, Lnki, as measured by XRD, that is at least 20% greater than a crystallite size of carbon fibers made in the same manner but without treating the lignin or absent the lignin; an increased crystallite content, as evidenced by an integration ratio of G and D bands (G/D ratio), as measured by Raman spectroscopy, that is at least 20% greater than a G/D ratio of carbon fibers made in the same manner but without treating the lignin or absent the lignin; a reduced elastic modulus, as measured by nanoindentation, that is at least 30% greater than a reduced elastic modulus of carbon fibers made in the same manner but without treating the lignin or absent the lignin; or a combination thereof.
While preferred embodiments of the invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the teachings of this disclosure. The embodiments described herein are exemplary only, and are not intended to be limiting. Many variations and modifications of the invention disclosed herein are possible and are within the scope of the invention.
Numerous other modifications, equivalents, and alternatives, will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such modifications, equivalents, and alternatives where applicable. Accordingly, the scope of protection is not limited by the description set out above but is only limited by the claims which follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated into the specification as an embodiment of the present invention. Thus, the claims are a further description and are an addition to the detailed description of the present invention. The disclosures of all patents, patent applications, and publications cited herein are hereby incorporated by reference.
This application is continuation of U.S. Ser. No. 16/975,667 filed Aug. 25, 2020, and entitled “Lignin Fractionation and Fabrication for Quality Carbon Fiber,” which is a 35 U.S.C. § 371 national stage application of PCT/US2019/019620 filed Feb. 26, 2019, and entitled “Lignin Fractionation and Fabrication for Quality Carbon Fiber,” which claims benefit of U.S. provisional patent application Ser. No. 62/635,469 filed Feb. 26, 2018, and entitled “Lignin Fractionation and Fabrication for Quality Carbon Fiber,” each of which is hereby incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 16975667 | Aug 2020 | US |
Child | 18487588 | US |