1. Technical Field
The invention relates to methods and systems related to renewable materials and biofuels production. Aspects of the invention relate to lignocellulosic conversion processes in which multiple process steps in a conventional process are combined in a single unit operation.
2. Discussion of Related Art
Lignocellulose processing involves multiple unit operations in order to economically convert available sugars, such as sucrose, hemicellulose, and cellulose, into desirable molecules, such as biofuels and biochemicals. For instance, a typical configuration for lignocellulose processing may involve the steps of feedstock preparation, hydrolysis, fermentation, and distillation. Collectively, these steps are usually taken in order to maximize the conversion yield of all available carbohydrates without formation of sometimes toxic side-products, such as furans or organic acids.
Biofuel production is desirable from an environmental standpoint, but in order to be commercialized, biofuel production must be economically feasible. High capital cost and overall economics of the process hinders commercialization. There is a need and desire to minimize capital in lignocellulose processing while maintaining conversion yields, particularly in the production of renewable materials such as biofuels.
The invention is directed to methods and systems for producing biofuels and other renewable materials, as well as biofuel component compositions made according to such methods. Compared to traditional processing of lignocellulosic biomass, the methods and systems described below result in minimized capital while maintaining or improving yields.
According to some embodiments, a method for production of renewable materials may include hydrolyzing a polysaccharide material while purifying the renewable material from a mixture that includes the polysaccharide material and the renewable material. For example, the polysaccharide may include hemicellulose and the hydrolyzing may include thermochemical hydrolysis. As another example, the renewable material may include a simple alcohol and the purifying may include distilling a portion of a fermentation broth. Furthermore, the method may include distillative hydrolysis occurring separate from fermenting processes using a lignocellulosic feedstock, wherein heat supplied drives distillation and hydrolysis.
The lignocellulosic feedstock used herein may include a hemicellulose material, a cellulose material, and a lignin material. Additionally, the lignocellulosic feedstock may include an unbound carbohydrate material. For example, the lignocellulosic feedstock may include sugarcane, energy cane, miscanthus, sorghum, sweet sorghum, Napier grass, corn stover, corn cobs, leaves, agricultural residue, switch grass, Arundo, energy grass, municipal solid waste, and/or hybrids thereof.
According to certain embodiments, a method of producing renewable materials from a lignocellulosic feedstock includes the steps of: (a) separating the renewable material from a fermentation broth while hydrolyzing a portion of the hemicellulose material to form a pentose material, (b) hydrolyzing at least a portion of the cellulose material to form a hexose material, and (c) fermenting the pentose material and the hexose material to produce fermentation broth comprising the renewable material.
In certain embodiments, the steps of hydrolyzing the cellulose material and fermenting the pentose material and the hexose material may occur substantially simultaneously. Also, in certain embodiments, the separating step may include distilling the renewable material.
According to additional embodiments, a method of producing renewable materials from a lignocellulosic feedstock includes: (a) fermenting the unbound carbohydrate material to produce renewable material in the presence of the hemicellulose material, the cellulose material, and the lignin material, (b) separating the renewable material from the hemicellulose material, the cellulose material, and the lignin material while hydrolyzing a portion of the hemicellulose material to form a pentose material, (c) hydrolyzing at least a portion of the cellulose material to form a hexose material, and (d) fermenting the pentose material and the hexose material to produce renewable material.
In accordance with the invention, there are a variety of ways in which the steps of this method may be carried out. In certain embodiments, step (c) and step (d) may occur substantially concurrently. Likewise, in certain embodiments, step (a) and step (d) may occur together. Furthermore, the renewable material of step (a) and step (d) may be combined before step (b). In certain embodiments, the lignin material may be separated between step (c) and step (d). Additionally or alternatively, heat supplied for separating the renewable material may also hydrolyze the hemicellulose material.
Renewable materials made by the methods herein may include a simple alcohol, for example. Examples of renewable materials made according to some embodiments include ethanol, n-butanol, isobutanol, 2-butanol, fatty alcohols, isobutene, isoprenoids, triglycerides, lipids, fatty acids, lactic acid, acetic acid, propanediol, and/or butanediol. The renewable material may include material suitable for use as biofuels, blendstocks, chemicals, intermediates, solvents, adhesives, polymers, and/or lubricants. The renewable material may include one or more biofuel components, such as lipids, or an alcohol, namely ethanol, butanol, and/or isobutanol. The biofuel may include gasoline, diesel, jet fuel, and/or kerosene.
According to some embodiments, a system for producing renewable materials from the lignocellulosic feedstock may include a distillative hydrolysis unit and a fermenting unit. The system may also include a lignin separation unit. In certain embodiments, the system may include a feedstock conditioning unit that includes a size reduction device. Additionally, in certain embodiments, the system may include a recycle line.
According to some embodiments, a method of producing renewable materials from a lignocellulosic feedstock may include: (a) fermenting in a first fermenting step the unbound carbohydrate material to produce renewable material in the presence of the hemicellulose material, the cellulose material, and the lignin material, (b) separating the renewable material from the hemicellulose material, the cellulose material, and the lignin material while hydrolyzing a portion of the hemicellulose material to form a pentose material, (c) fermenting in a second fermenting step a portion of the pentose material to produce renewable material in a fermentation broth with the lignin material, and (d) recycling a portion of the fermentation broth to the first fermenting step. In certain embodiments, a portion of the fermentation broth may be purged before step (d). The method may also include hydrolyzing the cellulose material to form a hexose material, and fermenting a portion of the hexose material to produce renewable material in a fermentation broth. Furthermore, in certain embodiments, the hydrolyzing and fermenting may occur substantially simultaneously with step (c).
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the features, advantages, and principles of the invention. In the drawings:
The invention is directed to methods and systems for producing biofuels and other renewable materials using a lignocellulosic conversion process that involves process intensification, as well as renewable materials made according to such methods.
As used herein, the term “renewable material” preferably refers to a substance and/or an item that has been at least partially derived from a source and/or a process capable of being replaced at least in part by natural ecological cycles and/or resources. Renewable materials may broadly include, for example, chemicals, chemical intermediates, solvents, adhesives, lubricants, monomers, oligomers, polymers, biofuels, biofuel intermediates, biogasoline, biogasoline blendstocks, biodiesel, green diesel, renewable diesel, biodiesel blend stocks, biodistillates, biochar, biocoke, renewable building materials, and/or the like. As a more specific example, the renewable material may include, without being limited to, any one or more of the following: ethanol, n-butanol, isobutanol, 2-butanol, fatty alcohols, isobutene, isoprenoids, triglycerides, lipids, fatty acids, lactic acid, acetic acid, propanediol, butanediol. In certain embodiments, the renewable material may include one or more biofuel components. For example, the renewable material may include a simple alcohol, such as ethanol, butanol, or isobutanol, or lipids.
The term “biofuel” preferably refers to components and/or streams suitable for use as a fuel and/or a combustion source derived at least in part from renewable sources. The biofuel can be sustainably produced and/or have reduced and/or no net carbon emissions to the atmosphere, such as when compared to fossil fuels. According to some embodiments, renewable sources can exclude materials mined or drilled, such as from the underground. In some embodiments, renewable resources can include single cell organisms, multi-cell organisms, plants, fungi, bacteria, algae, cultivated crops, non-cultivated crops, timber, and/or the like. Biofuels can be suitable for use as transportation fuels, such as for use in land vehicles, marine vehicles, aviation vehicles, and/or the like. More particularly, the biofuels may include gasoline, diesel, jet fuel, kerosene, and/or the like. Biofuels can be suitable for use in power generation, such as raising steam, exchanging energy with a suitable heat transfer media, generating syngas, generating hydrogen, making electricity, and/or the like.
“Lignocellulosic” and “lignocellulose” preferably broadly refer to materials containing cellulose, hemicellulose, lignin, and/or the like, such as may be derived from plant material and/or the like. Lignocellulosic material may include any suitable material, such as sugarcane, sugarcane bagasse, energy cane, energy cane bagasse, rice, rice straw, corn, corn stover, corn cobs, wheat, wheat straw, maize, maize stover, sorghum, sorghum stover, sweet sorghum, sweet sorghum stover, Arundo, cotton remnant, sugar beet, sugar beet pulp, soybean, rapeseed, jatropha, switch grass, energy grass, miscanthus, Napier grass, other grasses, and hybrids of any of these materials. Lignocellulosic material may also include, in general, grasses, leaves, legumes, forbs, cacti, timber, wood chips, softwoods such as pine and poplar, hardwoods such as eucalyptus, oak, and hickory, forest litter, wood waste, sawdust, paper, paper mill residue, paper waste, agricultural residue, municipal solid waste, any other suitable biomass material, and/or the like. Lignocellulosic feedstocks used in the methods and systems described herein typically include a hemicellulose material, a cellulose material, and a lignin material. In certain embodiments, the lignocellulosic feedstocks may also include an unbound carbohydrate material.
“Lignin” preferably broadly refers to a biopolymer that may be part of secondary cell walls in plants, such as a complex highly cross-linked aromatic polymer that may covalently link to hemicellulose.
“Hemicellulose” preferably broadly refers to a branched sugar polymer composed mostly of pentoses, such as with a generally random amorphous structure and typically may include up to hundreds of thousands of pentose units.
“Cellulose” preferably broadly refers to an organic compound with the formula (C6H10O5)z where z includes any suitable integer. Cellulose may include a polysaccharide with a linear chain of several hundred to over ten thousand hexose units and a high degree of crystalline structure, for example.
“Unbound carbohydrate” preferably broadly refers to sugar juice or sucrose that is not bound or not polymerized.
As explained above, lignocellulosic processing involves multiple unit operations in order to economically convert available sugars, such as sucrose, hemicellulose, and cellulose, into desirable molecules, such as biofuels and biochemicals. One example of a typical configuration for lignocellulose processing is illustrated by the flowsheet in
These steps are usually taken in order to maximize the conversion yield of all available carbohydrates without formation of sometimes toxic side-products, such as furans or organic acids.
In order to minimize capital while maintaining conversion yields, the flowsheet illustrated in
The lignocellulose process illustrated by the flowsheet in
Like the lignocellulose process illustrated by the flowsheet in
Unlike the lignocellulose processes illustrated by the flowsheets in
The lignocellulose process illustrated by the flowsheet in
In any of the lignocellulose processes described herein, the solids removed from the process may be put to use, such as in power generation, recycled products, or waste treatment. For example, the solids may either be burned to generate steam and electricity, which may be sold to the grid to improve GHG balance, or they used for quality particle board, fiber products, or waxes, for example.
Additional flowsheet variants for process intensification may be used in combination with any of the illustrated flowsheets, such as “evaporative fermentation,” wherein vacuum separation of fermentation off-gases effects carbohydrate conversion simultaneously with product recovery.
In a more general embodiment, a method for producing renewable materials includes hydrolyzing a polysaccharide material while purifying the renewable material from a mixture that includes both the polysaccharide material and the renewable material. For example, the polysaccharide may include hemicellulose and the hydrolyzing may include thermochemical hydrolysis. Additionally, the renewable material may include a simple alcohol and the purifying may be carried out by distilling a portion of a fermentation broth. In this type of embodiment, the method may include distillative hydrolysis that occurs separate from fermenting processes using a lignocellulosic feedstock, wherein heat supplied drives distillation and hydrolysis.
As a more specific example, a method of producing renewable materials from a lignocellulosic feedstock may include separating the renewable material from a fermentation broth while hydrolyzing a portion of the hemicellulose material to form a pentose material; hydrolyzing at least a portion of the cellulose material to form a hexose material; and fermenting the pentose material and the hexose material to produce fermentation broth comprising the renewable material. Optionally, hydrolyzing the cellulose material and fermenting the pentose material and the hexose material may occur substantially simultaneously. Furthermore, separating the renewable material from the fermentation broth may include distilling the renewable material.
As another example, a method of producing renewable materials from a lignocellulosic feedstock may include: fermenting an unbound carbohydrate material to produce renewable material in the presence of hemicellulose material, cellulose material, and lignin material; separating the renewable material from the hemicellulose material, the cellulose material, and the lignin material while hydrolzying a portion of the hemicellulose material to form a pentose material; hydrolyzing at least a portion of the cellulose material to form a hexose material; and fermenting the pentose material and the hexose material to produce renewable material.
In certain embodiments, the steps of hydrolyzing the cellulose material and fermenting the pentose material and the hexose material may occur substantially concurrently.
In certain embodiments, the steps of fermenting the unbound carbohydrate material and fermenting the pentose material and the hexose material occur together.
In certain embodiments, the renewable material from the step of fermenting the unbound carbohydrate material and the renewable material from the step of fermenting the pentose material and the hexose material may be combined before carrying out the step of separating the renewable material from the hemicellulose material, the cellulose material, and the lignin material while hydrolzying a portion of the hemicellulose material to form a pentose material.
Certain embodiments may include separating the lignin material between the steps of hydrolyzing the cellulose material and fermenting the pentose material and the hexose material.
In any of the described methods, heat supplied for separating the renewable material may also hydrolyze the hemicellulose material.
In general, a system used herein for producing renewable materials from lignocellulosic feedstock may include a distillative hydrolysis unit and a fermenting unit, as illustrated in
As yet another example of a method of producing renewable materials from a lignocellulosic feedstock, the method may include: fermenting in a first fermenting step an unbound carbohydrate material to produce renewable material in the presence of hemicellulose material, cellulose material, and lignin material; separating the renewable material from the hemicellulose material, the cellulose material, and the lignin material while hydrolyzing a portion of the hemicellulose material to form a pentose material; fermenting in a second fermenting step a portion of the pentose material to produce renewable material in a fermentation broth with the lignin material; and recycling a portion of the fermentation broth to the first fermenting step.
In certain embodiments, a portion of the fermentation broth may be purged before the step of recycling a portion of the fermentation broth to the first fermenting step.
Certain embodiments may also include hydrolyzing at least a portion of the cellulose material to form a hexose material; and fermenting a portion of the hexose material to produce renewable material in a fermentation broth. These steps may occur substantially simultaneously with the step of fermenting in a second fermenting step a portion of the pentose material to produce renewable material in a fermentation broth with the lignin material.
According to some embodiments, the invention may be directed to a renewable material made according to any of the methods and/or systems described herein.
While distillative hydrolysis, for example, achieves capital minimization by enabling the recovery of ethanol vapors in the same equipment where fiber pretreatment occurs, thus reducing the overall number of unit operations (and in some embodiments, eliminating roller mills, hydrolysis, and/or detox sections), distillative hydrolysis and the other process intensification arrangements described herein also provide a number of secondary benefits. These secondary benefits include:
The following Example compares ethanol yield of five different methods based on the flowsheets illustrated in
As described above,
As described above,
As described above,
As described above,
As described above,
The method illustrated by the flowsheet in
It will be apparent to those skilled in the art that various modifications and variations can be made in the disclosed structures and methods without departing from the scope or spirit of the invention. Particularly, descriptions of any one embodiment can be freely combined with descriptions or other embodiments to result in combinations and/or variations of two or more elements or limitations. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/747,463 filed on Dec. 31, 2012, which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61747463 | Dec 2012 | US |