The present invention relates to the art of medical treatments. More specifically, the present invention is concerned with limb sparing in mammals using patient-specific endoprostheses and cutting guides.
Osteosarcoma of the distal radius is the most common type of bone tumor in dogs and affects over 10 000 dogs each year. To date, several surgical limb sparing techniques exist which result in functionally good outcome. Nevertheless, post-surgery complication rates with these techniques remain significant. Complications most commonly encountered include implant or bone failure, infection and tumor recurrence.
Limb sparing has been performed for over 25 years in dogs afflicted by primary bone tumors of the appendicular skeleton.1,2 Limb sparing consists in removing the segment of bone bearing the primary tumor and using internal or external fixation to the remaining bones with or without segmental bone replacement, resulting in a salvaged functional limb. Although amputation remains the standard of care to address the local tumor, some dogs are not good candidates for amputation because of concurrent orthopedic or neurologic disease or some owners are opposed to having an amputation performed. The prognosis for survival is the same with amputation of the limb or limb sparing.1,2 The anatomic sites most amendable to limb sparing are the distal aspect of the radius, the ulna distal to the interosseous ligament, and the scapula. The distal aspect of the ulna and the scapula are technically simpler because they do not require reconstruction3-6 and are not considered true limb sparing procedures by many for this reason.
The most common anatomic site where limb sparing is performed in dogs is the distal radius. Historically, the most commonly performed technique has been the use of an allograft7-11 to replace the critical bone defect created by segmental osseous excision. Although limb function is good to excellent in 75%-90% of dogs with the allograft technique,1,11 the complication rate is significant. The most common complications with this technique are infection, implant related problems, and local recurrence. Infection is reported in up to 70% of limbs,7 implant problems in up to 60%,7 and local recurrence in up to 60% as well.9 The allograft technique requires either the maintenance of a bone bank, which is time consuming and costly, or purchasing an allograft from a commercial site (https://vtsonline.com, for example) on a case by case basis.3
Other surgical techniques have been developed for limb-sparing of the distal radial site. These techniques include: use of an endoprosthesis,11 distraction osteogenesis by bone transport,12,13 intraoperative extracorporeal radiotherapy,14 tumoral autograft pasteurization,15 microvascular ulnar autograft,16 ulnar rollover transposition,16,17 and lateral manus translation.18 Disadvantages of the bone transport osteogenesis procedure are the need for repeated multiple daily distractions of the apparatus and the significant amount of time required to fill the defect after tumor removal (up to 5 months).13 Microvascular autograft techniques require specialized equipment and training for the surgical team and add significant time to the procedure to allow microvascular anastomosis. Techniques that require the ipsilateral distal portion of the ulna to remain intact (ulnar rollover transposition and lateral manus translation) cannot be performed when the tumor invades the ulna.
The use of endoprosthesis carries the strong advantage of simplicity compared to the use of an allograft and consequently it is time-saving. The use of standard fixation plates bears limitations: they form a lap-type connection with the remaining bones, which is eccentric to the applied load, thus not offering an adequate support for the salvaged limb. Moreover, standard plates need contouring in the operation room to approach the natural curvature of the limb, thus extending the operation time.
Some of the above-mentioned problems are also present in other mammals, including other animals and humans.
Accordingly, there is a need in the industry to provide novel limb sparing techniques. An object of the present invention is therefore to provide such techniques.
The use of personalized implants appears to be an ideal solution to reduce the above-mentioned drawbacks19 of conventional limb sparing techniques. Notably, three problems related to limb sparing are: high infection rate, implant/bone failure and local recurrence of the tumor. The present document describes the use of computer aided reconstruction and design methods as well as two independent 3D printing techniques to design and manufacture personalized endoprostheses and cutting guides. The patient specific design approach promises to provide patients with highly resilient implants and decreased failure risk due to more physiological loading. Furthermore, the most natural implant fit will significantly reduce surgical time which reduces the risk of infection. Lastly, the rapidity of the proposed workflows enables shorter turnover times which will help in decreasing the risk of local recurrence.
Regarding implant/bone failure, the most important reason for this complication is that the currently available implants are not properly designed to withstand the forces generated through the limb with limb sparing and do not fit perfectly to the bony configuration. Currently, veterinary surgeons are trying to adapt the implants available to each patient but ultimately they never fit perfectly well and lead to exaggerated loads on both the implants and bones. By producing patient-specific implants, we have the opportunity to make these implants fit as perfectly as can be for each patient and to optimize their design to better withstand the loads transmitted through the limb. Instead of having the patient fit the implant, we would have the implant fit each patient.
Regarding high infection rate, the main reasons for infection are surgical trauma to the local environment, duration of the surgery, decreased local immunity from the presence of the tumor, use of adjuvant chemotherapy, or implantation of a large non-viable bone graft. The use of personalized implants allows the surgical time to be significantly decreased because there will be no need to modulate/bend the implant to fit a local geometry, thus reducing the risk of infection. Moreover personalized implants having a better fit could be thinner than conventional plates, thus contributing to reducing the risk of infection even further, as a link between insufficient soft tissue coverage at the implant site and infection has been reported.10
Regarding local recurrence, it has been shown that local delivery of a chemotherapeutic agent can reduce the risk of local recurrence9. 3D printing facilitates controlled surface texturing of endoprostheses and subsequent bioactiviation20 which could aid in locally delivering chemotherapeutics.
In a broad aspect, there is provided a limb sparring system for replacing a portion of a radius, the radius being adjacent to an ulna, the system comprising: a cutting guide including a cut guiding portion for guiding a saw when making a predetermined cut in the radius to excise the portion of the radius, an opposed ulnar mounting portion mountable to the ulna, and a linking portion extending therebetween; and an endoprosthesis configured for replacing the portion of the radius after the portion of the radius has been excised. When the cutting guide is operatively mounted to the radius and ulna, the cut guiding portion and the ulnar mounting portion engage respectively the radius and the ulna in a predetermined spatial relationship relative thereto.
There may also be provided a system wherein the cutting guide is delimited by a cutting guide peripheral surface defining a bone facing portion which faces the radius and ulna when the cutting guide is operatively mounted thereto, the bone facing portion being contoured to match a shape of the radius and the ulna.
There may also be provided a system wherein the linking portion is substantially elongated.
There may also be provided a system wherein the cut guiding portion defines a slit extending therethrough for guiding the saw.
There may also be provided a system wherein the slit is substantially perpendicular to the radius when the cutting guide is operatively mounted thereto.
There may also be provided a system wherein the cut guiding portion defines at least one drilling guide aperture extending therethrough.
There may also be provided a system further comprising a metal insert inserted in the drilling guide aperture, the metal insert defining a pass-through aperture extending therethrough.
There may also be provided a system wherein the drilling guide aperture is proximal to the slit.
There may also be provided a system wherein the cutting guide defines a K-wire aperture for inserting a K-wire therethrough to secure the cutting guide to the radius.
There may also be provided a system wherein the endoprosthesis includes a fixation plate securable to the radius, a bone replica extending from the fixation plate and a fixation shaft insertable axially in the radius and extending from the bone replica in register with and spaced apart from the fixation plate.
There may also be provided a system wherein the fixation shaft is substantially parallel to the fixation plate.
There may also be provided a system wherein the fixation plate includes a plate proximal portion, a plate distal portion and a plate intermediate portion extending therebetween, the plate intermediate portion supporting the bone replica.
There may also be provided a system wherein the plate proximal portion is substantially elongated and of substantially constant width.
There may also be provided a system wherein the plate proximal portion is secured to the radius when the endoprosthesis is operatively mounted to the radius.
There may also be provided a system wherein the plate distal portion defines at least two arms each for securing a respective metacarpal bone thereto.
There may also be provided a system wherein the plate distal portion is substantially V-shaped.
There may also be provided a system wherein the cut guiding portion defines at least one drilling guide aperture extending therethrough and the fixation plate defines at least one mounting aperture extending therethrough in the plate proximal portion, the at least one mounting aperture and the at least one drilling guide aperture being at substantially a same location relative to the radius when the endoprosthesis and the cutting guide are respectively operatively mounted to the radius.
There may also be provided a system wherein the fixation shaft is provided with at least one shaft aperture in register and coaxial with the at least one plate mounting aperture.
There may also be provided a system wherein the plate proximal and distal portions define respectively opposed proximal inner and outer surfaces and distal inner and outer surfaces, the proximal and distal inner surfaces facing respectively the radius and metacarpal bones when the endoprosthesis is operatively mounted to the radius, the proximal and distal inner surfaces being shaped to respectively conform to a shape of the radius and metacarpal bones.
There may also be provided a system wherein the bone replica is shaped substantially similarly to a mirror image of a portion of a contralateral radius corresponding to the portion of the radius.
There may also be provided a system wherein the ulnar mounting portion defines a hook, the hook defining a hook recess for receiving a styloid process of the ulna, the hook recess opening towards the cut guiding portion.
In another broad aspect, there is provided a method for performing surgery on a target bone with guidance from an adjacent bone adjacent to the target bone, the method using a cutting guide including a mounting portion, a cut guiding portion and a linking portion extending therebetween, the method comprising: mounting the mounting portion to the adjacent bone and positioning the cut guiding portion adjacent to the target bone, wherein the mounting portion and the cut guiding portion are positioned in a predetermined spatial relationship relative respectively to the adjacent and target bones; and making a cut in the target bone using a saw, the saw being guided along a predetermined path by the cut guiding portion; whereby the cutting guide is positioned relative to the target bone using a bone that differs from the target bone in which a cut is to be made.
In the present application, the target bone and adjacent bones are respectively most often the radius and the ulna. However, the roles of the radius and ulna can be reversed, such that the target bone is the ulna. In other embodiments, any two adjacent boned may be used, such as the ilium and the femur and adjacent carpal, metacarpal and phalange bones in human or animals, among others. One advantage of using the adjacent bone is that if the target bone deforms slightly due for example to a tumour growth, good placement of the cutting guide can still be obtained.
There may also be provided a method wherein the cutting guide is delimited by a cutting guide peripheral surface defining a bone facing portion which faces the target bone and the adjacent bone when the cutting guide is operatively mounted thereto, the bone facing portion being contoured to match a shape of the target and adjacent bones; and mounting the mounting portion and positioning the cut guiding portion includes abutting the cutting guide peripheral surface against the target and adjacent bones where the bone facing portion is contoured to match the shape of the target and adjacent bones so that the cutting guide is positioned at a predetermined location and a predetermined orientation relative to the target bone.
There may also be provided a method wherein the cutting guide defines a K-wire aperture for inserting a K-wire therethrough, the method further comprising inserting the K-wire though the K-wire aperture and into the target bone to secure the cutting guide to the target bone.
There may also be provided a method wherein the target bone is a radius and the adjacent bone is an ulna defining a styloid process.
There may also be provided a method wherein mounting the mounting portion including hooking the styloid process.
There may also be provided a method wherein making the cut excises a portion of the target bone, the method further comprising replacing the portion of the target bone with an endoprosthesis.
There may also be provided a method further comprising: imaging a contralateral bone contralateral to the target bone and forming a model of a part of the contralateral bone corresponding to the portion of the target bone; and manufacturing the endoprosthesis, wherein the endoprosthesis includes a bone replica part thereof that is shaped like a mirror image of the model of the part of the contralateral bone.
There may also be provided a method wherein the target bone is a radius, the adjacent bone is an ulna and metacarpals are present distally to the radius and ulna; manufacturing the endoprosthesis further includes providing a fixation shaft and a fixation plate extending from the bone replica opposed to each other; replacing the portion of the target bone with the endoprosthesis includes inserting the fixation shaft in a medula of a remaining part of the radius after excision and fastening the fixation plate to the metacarpals.
There may also be provided a method wherein the cut guiding portion defines a slit extending therethrough for guiding the saw, making the cut including inserting a saw blade of the saw into the slit and cutting through the target bone with the saw blade inserted in the slit.
There may also be provided a method wherein the cut guiding portion defines at least one drilling guide aperture extending therethrough, the method further comprising drilling in the bone with a drill having a drill bit extending through the drilling guide aperture.
There may also be provided a method further comprising imaging the target bone and the adjacent bone; forming a model of the shape of the target bone and the adjacent bone; and manufacturing the cutting guide based on the model of the shape of the target bone and the adjacent bone so that the bone facing portion is contoured to conform to the shape of the target bone and the adjacent bone.
There may also be provided a method wherein manufacturing the cutting guide is performed through 3D printing.
There may also be provided a method wherein the target bone is affected by a tumour.
In an example, the above-described system and method are usable in the following limb sparring method. While the proposed method herein is used in the context of dogs, this method is also applicable in other animals, such as humans for example. Anatomically correct geometrical reconstruction of both forelimbs is the first step for the design of the custom-made endoprosthesis. Commonly, in dogs suffering from osteosarcoma, both the affected and normal contralateral limbs are imaged simultaneously. The affected limb serves to determine the length of the excised portion of the radius and to design the cutting guide. The unaffected limb is utilized to design the bone replica portion of the endoprosthesis. Subsequently, a mirrored image of the replica is generated to bridge the bone defect created during surgery. The mirrored geometry is then examined and, if necessary, adjusted to obtain the best possible fit between the bone replica and the remaining proximal portion of the affected radius. This step allows detecting and correcting anatomical differences between the normal contralateral and affected limbs. This approach originates from the circumstance that the tumor often results in severe deformations of the affected radius; hence mirroring is then a designated solution for adequate implant design. A patient-specific limb sparing plate is created on the mirrored bone replica and the operated remaining radius to complete the endoprosthesis.
However, in some embodiments, for intracompartmental tumors that have not breached the bone cortex and in patients whose articular surfaces are intact, it is possible to design the implant by using the affected limb only. The approach to be taken is decided on a case-by-case basis.
To form 3D models of both affected and contralateral limbs, starting from a CT image, image segmentation is carried out, for example using Mimics (Materialise NV, Belgium), a highly accurate contour detection tool to separate bony from surrounding soft tissue structures. The outer surface of the limbs is typically automatically created, using for example the marching cube algorithm. The resulting tessellated limb models are exported into a computer assisted design tool for post processing. For example, the design tool used is CATIA v5 (Dassault Systems, France), a highly performant CAD/CAM software. With the help of the CAD tool, the tessellated limb models are smoothed and filled to create three dimensional solid body models. These will include in some embodiments the medullary cavity and its surrounding bony structures (diaphysis, metaphyses and epiphyses). Distinguishing these bone components, when performed, allows for a more durable prosthetic design.
The design of the implant is accomplished in two steps. First, a personalized cutting guide is designed. Second, the personalized implant, also named endoprosthesis herein, is designed. The design of these components is, for example, carried out entirely in the CAD environment. Subsequently, both components are manufactured, for example using 3D printing or a CNC controlled machine, among other possibilities.
The cutting guide is highly advantageous in ensuring that the limb-sparing endoprosthesis will precisely fit the bone defect in terms of length and overall size. The cutting guide's shape is primarily influenced by the deformation created by the bone tumor and the cutting guide length depends on the resection margin established by the surgeon to prevent tumor recurrence. To create the cutting guide, the location at which osteotomy will occur is marked on the reconstructed affected limb geometry. Second, the profile of the cutting guide is drawn with the help of 2D sketches on the affected limb. The 3D solid model of the cutting guide is created using a multi-section solid extrusion feature. The 3D cutting guide extends beyond the osteotomy location and intersects with the limb. At the osteotomy site, a slit in the form of a cutting slot pocket feature, wide enough for the bone saw blade to pass, is provided in the cut guiding portion. However, other manners of guiding the saw blade are within the scope of the invention, such as providing a surface along which the saw blade may be guided, among other possibilities. When the slit is provided, it advantageously ensures that the saw blade can only cut at a predetermined location to make a predetermined cut. During surgery, the cutting guide will be aligned using the distal tip of the ulna. Using this anatomical landmark is beneficial for alignment, because the tumor's pseudocapsule will remain intact. Lastly, a Boolean type logical subtraction between the affected limb and the cutting guide will be performed to create a seamless geometrical fit between the limb and the cutting guide. This fit helps in (i) centering the guide's cutting slot exactly at the osteotomy location and (ii) to lock the cutting guide in place while the veterinary surgeon performs the osteotomy.
The endoprosthesis (i) serves to span the bone defect caused by the surgical en bloc resection of the osteosarcoma, (ii) improves adequate biomechanical functionality of the spared limb, and (iii) reduces the risk of implant failure and infection. Hence, the patient-specific prosthesis plays an important role in improving the patient's quality of life and function.
The endoprosthesis incorporates two main functional components, which are typically combined in one single part. Hence, no assembly of the implant is required, which greatly reduces the risk of failure, the creation of third body wear particles and surgical time. The first functional component is a mirror image of the normal contralateral radius. The second functional component is a personalized upgraded limb sparing plate. This patient-specific implant allows panarthrodesis (surgical joint stiffening) of the carpal joint.
The replica of the removed affected bone segment is created using a mirror image of the reconstructed normal contralateral solid limb model, obtained as described previously. At the proximal flat contact surface of the replica, a scaled extrusion of a portion of the medullary cavity is created (intramedullary stem) to enable a more solid connection between the implant and the intact bone. The limb sparing plate's locally variable profile and curvature is drawn on top of the reconstructed affected limb geometry using 2D sketches along the segment's longitudinal axis. During sketch creation, it is possible to implement variable degrees of extension in the antebrachial-carpal joint which will further improve limb function. The 3D model of the fixation plate is then generated, for example, with the help of a multi-section solid extrusion feature. Subsequently, the replica of the removed segment and the limb sparing plate are combined to form a single solid part with the help of a Boolean type logical addition. Lastly, mounting apertures, for example threaded countersunk hole features, are placed on the proximal and distal portions of the limb sparing plate for locking screw placement during surgery. To enable a solid connection between the implant and the remaining radius, at least one, for example two, screws from the radial side pass through threaded holes in the intramedullary pin, thereby acting similarly to an interlocking nail.
The cutting guide and endoprosthesis are manufactured using any suitable method. For example they are manufactured using two different additive manufacturing techniques. Prior to manufacturing, the solid 3D models of the cutting guide and endoprosthesis are surface tessellated and exported as separate .STL files. In some embodiments, the cutting guide is manufactured using fused deposition modeling (FDM), a cost-effective additive manufacturing technology capable of transforming biocompatible plastic materials.21 In some embodiments, the endoprosthesis is manufactured using selective laser melting (SLM), a versatile manufacturing technology capable of direct manufacturing of parts made of biocompatible metals. An EOS280 SLM system can be utilized which uses a focused Nd-YAG laser to locally melt metal powder (e.g. stainless steel) evenly spread on a movable building plate. To provide adequate implant stability while minimizing the implant weight and reduce the risk of excessive thermal stresses, a lattice structure can be implemented inside the replica of the removed bone. Upon completion of the manufacturing process, the endoprosthesis is cut off the building platform. Finally, all surfaces of the endoprosthesis may be finished using sand blasting followed by polishing. Such treatment results in a smooth and even surface that decreases the risk of bacterial adhesion and minimizes the risk of biofilm formation.
Designing patient-specific limb-sparing implants is advantageous over existing techniques, such as a combination “radius spacer-limb salvage plate” (RS-LSP), as it provides the closest to natural fit of the implant, a more physiological distribution of the mechanical load through the spared limb and hence a reduced risk of implant or bone failure. In addition to tailoring the plate curvature to that of the patient, the plate cross-section can also be minimized to create a low profile implant that is sufficiently strong to withstand applied loads. Moreover, using patient-specific limb-sparing implants avoids the use of the endoprostheses with fixed, predetermined length, which is a limitation of the implants on the market today. Consequently, the length of the bone resection is dictated by the length of the commercially-available implants instead of the optimal length of resection.
More formally, the above suggests a method comprising the steps of: generating an anatomically accurate image of a bone of a patient and of a contralateral bone of the patient that includes surface topographies by scanning the bone and, optionally, the contralateral bone, using an imaging apparatus; using a computer processor to convert the anatomically accurate image to a digital model; using the computer processor to form a digital representation of a cutting guide that is positionable relative to the bone in a predetermined relationship relative thereto, the cutting guide having a surface topology complementary to a portion of the surface of the bone; and manufacturing the cutting guide based upon the digital representation of the cutting guide such that the manufactured cutting guide includes a complementary surface topology on a bone engagement portion complementary to the portion of the surface of the bone.
In some embodiments, the method also includes using the computer processor to form a digital representation of an endoprosthesis that is positionable relative to the bone in a predetermined relationship relative thereto, the endoprosthesis having a shape personalized to replace a portion of the bone cut using the cutting guide; and manufacturing the endoprosthesis based upon the digital representation of the endoprosthesis such that the manufactured endoprosthesis have a fixation plate that matches the surface topology in an uncut portion of the bone.
In some embodiments, the cutting guide and the endoprosthesis include respectively a drilling guide aperture and a mounting aperture that are substantially similarly positioned relative to the bone when the cutting guide and the endoprosthesis are sequentially mounted thereto.
For example, the bone includes a radius and/or an ulna. Example of imaging apparatus include a computed tomography (CT) apparatus and a magnetic resonance imaging (MRI) apparatus, among others.
In some embodiments, the method also includes exposing the bone surgically; mounting the cutting guide to the bone; excising a portion of the bone by guiding a cut in the bone using the cutting guide; removing the cutting guide; and mounting the endoprosthesis to the bone to replace the excised portion of the bone.
The present application cites many documents, the contents of which is hereby incorporated by reference in their entirety.
The present application is a continuation-in-part of U.S. patent application Ser. No. 16/181,954 filed 2018 Nov. 6, which is a continuation-in-part of U.S. patent application Ser. No. 15/620,502 filed 2017 Jun. 12, which itself claims benefit from U.S. provisional patent application 62/351,533 filed 2016 Jun. 17. The contents of these two documents is hereby incorporated by reference in its entirety
Other objects, advantages and features of the present invention will become more apparent upon reading of the following non-restrictive description of preferred embodiments thereof, given by way of example only with reference to the accompanying drawings.
The present invention relates to limb sparing methods and devices. With reference to
In the present document, the terminology distal and proximal refers to the location relative to an animal on which surgery is performed. Proximal elements are closer to a body of the animal, while proximal elements are closer to a tip of a limb on which surgery is performed. Also, the terminology “substantially” and “about” is used to denote variations in the thus qualified terms that have no significant effect on the principle of operation of the proposed devices, systems and methods. These variations may be minor variations in design or variations due to mechanical tolerances in manufacturing and use of these devices and systems. These variations are to be seen with the eye of the reader skilled in the art.
While any suitable cutting guide may be manufactured, the cutting guide 200 shown in
Referring more specifically to
Returning to
The cut guiding portion 214 is configured to abut against the radius adjacent the cut location where the radius 202 is to be cut during surgery. For example, the cut guiding portion 214 defines a slit 220 through which the blade of a saw (not shown in the drawings) can be inserted to cut through the radius 202. Thus, the slit 220 is configured, sized and positioned to be substantially adjacent the cut location when the cutting guide 200 is operatively mounted to the radius 202 and ulna 204. In some embodiments, the cut guiding portion 214 takes the form of a substantially plate-shaped element through which the slit 220 extends, but other configurations are within the scope of the invention. The slit 220 is typically generally perpendicular to the radius 202 when the cutting guide 200 is mounted to the radius 202 and ulna 204, but other orientations are within the scope of the invention.
The ulnar mounting portion 216 is substantially elongated and defines a substantially rectilinear main shaft 222 extending from the linking portion 218 and terminated, opposed to the cut guiding portion 214, by a hook 224. The hook 224 defines a hook recess 226 which opens generally towards the cut guiding portion 214. When the cutting guide is operatively mounted to the radius 202 and ulna 204, the main shaft 222 extends generally parallel to the ulna 204, and the ulnar distal tip (styloid process) 206 is received in the hook recess 226.
The linking portion 218 takes any suitable shape. For example, the linking portion 218 is substantially elongated and rectilinear and extends at an angle relative to the main shaft 222.
The cutting guide 200 is delimited by a cutting guide peripheral surface 228. The cutting guide peripheral surface 228 defines a bone facing portion 230, better seen in
The fixation plate 302 includes a plate proximal portion 308, a plate distal portion 310 and a plate intermediate portion 312 extending therebetween. The plate intermediate portion 312 supports the bone replica 304. The plate proximal and distal portions 308 and 310 are provided respectively proximally and distally relative to the plate intermediate portion 312 when the endoprosthesis 300 is operatively secured to the radius 202 and adjacent bones.
In a specific embodiment of the invention, the plate proximal portion 308 is substantially elongated and of substantially constant width, as better seen in
The bone replica 304 has a shape substantially similar to the shape the portion of the radius 202 that it replaces. This is achieved for example by having the bone replica 304 having the shape of a mirror image of the contralateral radius.
The fixation shaft 306 extends coaxially with the bone replica 304, at its proximal end, and is dimensioned to be inserted axially in the medulla 209 of the remaining portion of the radius 202, as seen in
The plate proximal and distal portions 308 and 310 defines respectively opposed proximal inner and outer surfaces 322 and 324 and distal inner and outer surfaces 326 and 328, as seen in
The fixation plate 302 can be chamfered at one or both ends to facilitate insertion between bones and soft tissues.
More specifically, the cut guiding portion 406 of the cutting guide 400 is slightly larger than the cut guiding portion 214 of the cutting guide 200 and extends proximally to a greater extent that in the cutting guide 200. The cut guiding portion 406 defines at least one, for example two, drilling guide apertures 402 proximally to the slit 220. The position of the drilling guide apertures 402 corresponds to the position of a corresponding number of mounting apertures 330 of the endoprosthesis 300. The number of drilling guide apertures 402 may be smaller than the number of mounting apertures 330, equal thereto, or larger than the number of mounting apertures 330. This last possibility is useful, for example, in surgical procedures in which drilling apertures in bones for purposes other than mounting the endoprosthesis 300 is required. The drilling guide apertures 402 are usable to pre-drill apertures that will be in register with the mounting apertures 330 so that the endoprosthesis 300 can be mounted more precisely to the radius 202. The drilling guide apertures 402 may be used directly to guide drilling, or may be configured to receive an insert 408 that will guide drilling through a suitably sized pass-through aperture 409 extending therethrough. Indeed, in some embodiments the cutting guide 400 is made of a relatively soft material. In such embodiments, it may be useful, but not required, to use the insert 408 made of a harder material, such as a metal, inserted in the the drilling guide apertures 402 to guide drilling. Such inserts 408 may be for example externally threaded and threadedly engage an internally threaded drilling guide aperture 402, for example and non-limitingly using self-locking threads.
Also, the K-wire aperture 404 is formed in the cutting guide 400 and configured, positioned and sized to receive a K-wire 410 thereinto such that the K-wire 410 can be inserted in the radius 202 before the drilling and cutting steps. For example, the K-wire aperture 404 is adjacent the slit 220 and slightly proximal thereto.
In use, as seen in
Although the present invention has been described hereinabove by way of preferred embodiments thereof, it can be modified, without departing from the spirit and nature of the subject invention as defined in the appended claims.
J Am Vet Med Assoc 227:1604-1607, 2005.
Number | Date | Country | |
---|---|---|---|
62351533 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16181954 | Nov 2018 | US |
Child | 17015721 | US | |
Parent | 15620502 | Jun 2017 | US |
Child | 16181954 | US |