Limited conduction heat reflecting materials

Information

  • Patent Grant
  • 11612201
  • Patent Number
    11,612,201
  • Date Filed
    Tuesday, October 16, 2018
    5 years ago
  • Date Issued
    Tuesday, March 28, 2023
    a year ago
Abstract
Disclosed are insulating materials, and in particular materials that offer improved insulation properties without compromising breathability. The insulating materials may include a base material having a moisture vapor transfer rate (MVTR) of at least 2000 g/m2/24 h (JIS 1099 A1); a plurality of heat-reflecting elements coupled to a first side of the base material, each heat-reflecting element having a heat-reflecting surface and being positioned to reflect heat towards an underlying surface; and a plurality of spacer elements coupled to the first side of the base material, each spacer element sized and shaped to reduce contact of the heat-reflecting elements with the underlying surface.
Description
TECHNICAL FIELD

Embodiments relate to heat reflecting materials, and in particular, to materials that offer improved heat reflective properties and limit heat conduction without compromising breathability.


BACKGROUND

Materials that provide improved insulation by reflecting body heat towards the body surface of a wearer often sacrifice moisture vapor transmission and result in low breathability. Such a reduction in moisture vapor transmission may cause the fabric to become damp, thereby causing discomfort and accelerating heat loss through heat conduction. Additionally, contact between heat-reflecting materials and the skin can undesirably allow the heat-reflecting materials to conduct body heat away from the skin, thus inadvertently accelerating heat loss.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.



FIG. 1 illustrates a top view of one example of an insulating material, in accordance with various embodiments;



FIG. 2 illustrates a side view of the insulating material of FIG. 1, in accordance with various embodiments;



FIG. 3 illustrates a perspective view of the insulating material of FIG. 1, in accordance with various embodiments;



FIG. 4 illustrates a perspective view of a second example of an insulating material, in accordance with various embodiments;



FIG. 5 is a digital image of a third example of an insulating material, in accordance with various embodiments;



FIG. 6 is a digital image of a fourth example of an insulating material, in accordance with various embodiments; and



FIGS. 7A, 7B, 7C, and 7D are heat escape maps measured with an infrared (IR) thermal imaging camera, for base fabric with vertically oriented fiber (VOF) elements (FIG. 7A), base fabric alone (FIG. 7B), base fabric with heat-reflecting elements (FIG. 7C), and base fabric with heat-reflecting elements and VOF elements (FIG. 7D), in accordance with various embodiments.





DETAILED DESCRIPTION OF DISCLOSED EMBODIMENTS

In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.


Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments; however, the order of description should not be construed to imply that these operations are order dependent.


The description may use perspective-based descriptions such as up/down, back/front, and top/bottom. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of disclosed embodiments.


The terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical contact with each other. “Coupled” may mean that two or more elements are in direct physical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.


For the purposes of the description, a phrase in the form “A/B” or in the form “A and/or B” means (A), (B), or (A and B). For the purposes of the description, a phrase in the form “at least one of A, B, and C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C). For the purposes of the description, a phrase in the form “(A)B” means (B) or (AB) that is, A is an optional element.


The description may use the terms “embodiment” or “embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments, are synonymous.


Embodiments herein provide insulating materials, for example, for body gear and outdoor gear, that provide improved heat reflection and reduced heat conduction, while still providing excellent moisture vapor transmission.


In various embodiments, the insulating materials may include a base material, such as a fabric, having a moisture vapor transmission rate (MVTR) of at least 2000 g/m2/24 h (JIS 1099 A1), such as at least 4000 g/m2/24 h (JIS 1099 A1), at least 6000 g/m2/24 h, or at least 8000 g/m2/24 h. In various embodiments, the base material may be a mesh, foam, or leather. As used herein, the term “moisture vapor transmission rate (MVTR)” refers to a measure of the passage of water vapor through a material, such as a fabric. The term “breathable” is used herein to refer to a fabric that has an MVTR at or above 2000 g/m2/24 h (JIS 1099 A1). In some embodiments, a breathable material allows for the passage of water vapor, but not liquid water. Although the term “breathable” is often assumed to also encompass air permeability, a “breathable” fabric does not necessarily have a high air permeability. Additional desirable characteristics of the base fabric may include water resistance, waterproofness, stretch, drape, and softness. In embodiments, a base material can be a woven or non-woven fabric, a knitted fabric, a foam, a mesh, a leather or other material used for the construction of an article of body gear and/or outdoor gear.


In various embodiments, a plurality of heat-reflecting elements may be coupled to a first side of the base material (for example, the side of the material that faces a user's body when the base fabric or other material is incorporated into body gear), and each heat-reflecting element may have a heat-reflecting surface and may be positioned to reflect heat towards a heat source, such as a user's body. Additionally, a plurality of spacer elements may be coupled to the first side of the base material. In various embodiments, each spacer element may maintain a space, such as an air space, between the first side of the base material, and may prevent or reduce contact between the heat-reflecting elements and an underlying surface, such as a base layer, intermediate layer of clothing, and/or a user's skin, thereby reducing heat conduction through the base material.


In various embodiments, each spacer element may project away from the first side of the base material at least 0.2-5.0 mm, such as about 0.2-2.0 mm. In various embodiments, the spacers may take any of a number of forms, and may in some examples be made from woven or non-woven pods, knitted material, foam elements, or vertically oriented fibers (VOF). In some embodiments, a spacer element made from vertically oriented fibers (e.g., a VOF element) may include a plurality of fibers that are oriented substantially perpendicular to the surface of the base material. In various embodiments, at least some of the plurality of spacer elements may at least partially overlay and/or overlap at least some of the plurality of heat-reflecting elements. In some embodiments, the spacer elements may completely overlap or partially overlap the heat-reflecting elements. In specific, non-limiting examples, the spacer elements may cover, overlay, or overlap about 2-40% of the surface area of the heat-reflecting elements, such as about 5-25%. In various embodiments, each spacer element may have a maximum dimension of about 1-6 mm, such as about 2-3 mm, and a center-to-center spacing of the spacer elements may be about 3-5 mm.


In various embodiments, the spacing and placement of both the heat-reflecting elements and the spacer elements may leave portions of the base material uncovered between adjacent elements, and these uncovered portions of the base material may provide moisture vapor transmission, resulting in a breathable material, such as a breathable fabric. In some embodiments, at least 15% of the base material may remain uncovered by both heat-reflecting elements and spacer elements, such as about 20%, about 30%, about 35%, or about 50%, In various embodiments, the heat-reflecting elements may cover a sufficient surface area of the base material to reflect a desired amount of heat, such as body heat, towards the body of a user, such as at least 30% of the base material.


In various embodiments, the spacer elements may provide enhanced insulation compared to base material alone. In various embodiments, the spacer elements may prevent or reduce contact between the heat-reflecting elements and an underlying surface, such as the surface of a base layer, or intermediate fabric or material layer, which may in turn reduce heat conduction by the heat-reflecting elements. Additionally, in various embodiments, the spacer elements may prevent or reduce contact between the heat-reflecting elements and the skin of a user, which may in turn reduce heat conduction by the heat-reflecting elements. In various embodiments, the spacer elements also may maintain space between the base material and an underlying surface, such as the surface of a base layer, or intermediate fabric or material layer, which may facilitate air flow and/or ventilation and enhance the sensation of breathability. In various embodiments, the spacer elements also may maintain space between the skin of a user and the base material, which may facilitate air flow and/or ventilation and enhance the sensation of breathability. Furthermore, the overlapping placement of the spacer elements and the heat-reflecting elements surprisingly does not reduce the amount of heat reflected by the heat-reflecting elements, or reduce the heat reflected as much as expected. In some embodiments, any loss of heat reflection may be more than offset by a corresponding decrease in heat conduction. In embodiments, a disclosed insulating material exhibits at least a 50% increase in insulation value over the base material from which it was constructed, for example at least 75%, at least 100%, at least 125%, at least 150%, at least 175%, at least 200%, at least 225% or even at least 250% greater insulation value over the value of the base material from which it was constructed, such as between about 50% and about 230% greater insulation value than the base material from which it was constructed, for example a material that does not include either heat-reflecting elements or spacer elements as described herein.


One of the most significant advantages of the disclosed materials is that the base material, such as base fabric, containing heat-reflecting elements and spacer elements, such as vertically oriented fiber elements, provides greater insulation than the base material alone by a surprising and unexpected amount. By adding the spacer elements and the heat-reflecting elements to the base material, heat is trapped and/or retained by the insulating material in a synergistic manner. As demonstrated in the Example below, and as specifically shown in Table 2, the inclusion of both spacer elements and the heat-reflecting elements to a base fabric has almost a two-fold increase over what would be expected from a simple linear addition of the effect of the spacer elements and the heat-reflecting elements alone. This synergistic effect provides for an insulating material that far exceeds expectations.



FIGS. 1, 2, and 3 illustrate a top view (FIG. 1), a side view (FIG. 2), and a perspective view (FIG. 3) of one example of an insulating material, in accordance with various embodiments. With reference to FIGS. 1, 2, and 3, the insulating fabric 100 may include a base material 102, such as a base fabric having an MVTR of at least 2000 g/m2/24 h, which may allow moisture vapor to move away from the user's body and through the base material so as to prevent moisture build up inside the body gear. Additionally, the base material 102 may have one or more additional functional characteristics that are appropriate for its intended use. The base material 102 may be made from any material or materials that provides the desired set of functional characteristics, feel, weight, thickness, weave, texture, and/or other desired property, and may include nylon, polyester, rayon, cotton, spandex, wool, silk, or a blend thereof. In specific, non-limiting embodiments, the base material may be a “performance” material, such as a performance synthetic knit or woven material that has a high MVTR (for example, at least 2000 g/m2/24 h, JIS1099 A1) and an air permeability of above 10-30 CFM on a Frazier device. In some embodiments, the first side of the base material may be flat for easier application of the heat-reflecting elements and/or spacer elements.


With continued reference to FIGS. 1, 2, and 3, the insulating material 100 also may include a plurality of heat-reflecting elements 104 coupled to a first side of the base material 102. As used herein, the term “first side” refers to the side of the base material 102 that is intended to face the user's body when the base material 102 is incorporated into body gear, whether that side contacts the user's body (such as when the insulating material 100 is used as the innermost or only layer in an article of body gear), or not (such as when the insulating material 100 is incorporated into the article of body gear as an intermediate or outermost layer). In various embodiments, each heat-reflecting element 104 may have a heat-reflecting surface and may be positioned to reflect heat towards the user's body.


As used herein, the term “heat-reflecting element” refers to a unitary element having a surface that reflects electromagnetic radiation having longer wavelengths than those of visible light (e.g., the infrared range, which extends from the nominal red edge of the visible spectrum at 700 nanometers (frequency 430 THz), to 1 mm (300 GHz) for the purpose of this disclosure). This range includes most of the thermal radiation emitted by objects near room temperature. In various embodiments, the heat-reflecting elements also may reflect electromagnetic radiation in other parts of the spectrum, such as the visible spectrum. In various embodiments, the heat-reflecting elements are formed from a metallic plastic or a foil, such as a film vacuum-metallized with aluminum. Various embodiments may include a film vacuum-metallized with aluminum which is coated with a thin lacquer. In various embodiments, the thin lacquer overcoat may contain pigments or dyes to modify the reflection of electromagnetic radiation in the visible range, thereby modifying the color of the reflective foil, while at the same time not significantly reducing the reflectance of electromagnetic radiation in the thermal IR range (5 to 35 microns). For example, the pigmented foil may be less than 1% lower thermal IR reflectance than the non-pigmented foil, less than 2% lower thermal IR reflectance than the non-pigmented foil, or less than 5% thermal IR reflectance than the non-pigmented foil. Generally, the heat-reflecting elements may include aluminum, silver, or any other heat-reflecting metal, or more generally, a low-emissivity heat reflective material. In particular embodiments, the heat reflecting elements may have an emissivity of no higher than 0.1, such as no higher than 0.08, no higher than 0.06, or no higher than 0.04.


In various embodiments, the heat-reflecting elements may cover 30-70% of the base material (e.g., the surface area ratio of heat-reflecting elements to base material may be from 7:3 to 3:7), such as 40-60% (e.g., a surface area coverage ratio of from 4:6 to 6:4). In various embodiments, the heat-reflecting elements may be coupled to the base material with an adhesive. In various embodiments, the heat-reflecting elements and/or spacer elements may be coupled to the base material with a glue or an adhesive, such as a urethane or acrylate-based adhesive. In some embodiments, the glue or adhesive may be adsorbent or absorbent, for example to aid in moving moisture outward from the body.


In various embodiments, the heat-reflecting elements may be applied in a pattern or a continuous or discontinuous array, such as a repeating or non-repeating pattern of separate, discrete elements (e.g., dots, rings, lines, stripes, waves, triangles, squares, stars, ovals, or other geometric patterns or shapes, or logos, words, etc.) or a repeating or non-repeating pattern of interconnected elements (such as a lattice). In various embodiments, a pattern of heat-reflecting elements may be symmetric, ordered, random, and/or asymmetrical. Further, the pattern, size, shape, or spacing of the heat-reflecting elements may differ at strategic locations in the body gear as dictated by the intended use of the article of body gear.


In various embodiments, the size of the heat-reflecting elements may be largest (or the spacing between them may be the smallest) in the core regions of the body for enhanced heat reflection in those areas, and the size of the heat-reflecting elements may be the smallest (or the spacing between them may be the largest) in peripheral areas of the body. In other embodiments, the size of the heat-reflecting elements may be smallest (or the spacing between them may be the largest) in the core regions of the body, and the size of the heat-reflecting elements may be the largest (or the spacing between them may be the smallest) in peripheral areas of the body for enhanced heat reflection in those areas. In some embodiments, the degree of coverage by the heat-reflecting elements may vary in a gradual fashion over the entire garment as needed for regional heat management. In some embodiments, reducing the area of individual elements, but increasing the density may provide a better balance between heat reflection and base material functionality. In some embodiments, the surface area of individual heat-reflecting elements may be less than 1 cm2. In various embodiments, each heat-reflecting element may have a maximum dimension (diameter, hypotenuse, length, width, etc.) that is less than or equal to about 1 cm, such as 4 mm, or 1 mm.


With continued reference to FIGS. 1, 2, and 3, in certain specific, non-limiting examples, the insulating material also may include a plurality of vertically oriented fiber (VOF) elements 106 coupled to the first side of the base material 102, and each VOF element 106 may include a plurality of fibers that are oriented substantially perpendicular to the surface of the base material. As used herein, the term “VOF element” refers to a unitary element having a plurality of substantially perpendicular fibers. In various embodiments, the VOF elements may be discrete pods that contain a high density of vertically oriented fibers, such as at least 200 VOF fibers for a high denier, fairly coarse fiber. In various embodiments, the fibers may comprise nylon, polypropylene, or polyester. In various embodiments, the fibers may include nylon, rayon, polyester, and/or cotton fibers. The fibers may be wicking fibers in some embodiments. As defined herein, the term “wicking” refers to a fiber that allows transport of a fluid along its length, which for a VOF fiber means generally perpendicular to the plane of the base material. In various embodiments, the VOF elements and/or the individual fibers may be coupled to the base material with an adhesive. In other embodiments, the VOF fibers may be integrated into the material by embroidering, weaving, or knitting.


In various embodiments, the vertically oriented fibers may have an average length of 0.2-2.0 mm, such as about 0.6 mm, and an average linear density of 0.9-22 dtex, such as 1.7 dtex. In various embodiments, the fibers may be selected and arranged to maximize capillary forces between the fibers.


The VOF elements may be applied in a pattern or a continuous or discontinuous array, such as a repeating or non-repeating pattern of separate, discrete elements (e.g., dots, rings, lines, stripes, waves, triangles, squares, stars, ovals, or other geometric patterns or shapes, or logos, words, etc.) or a repeating or non-repeating pattern of interconnected elements (such as a lattice). In various embodiments, a pattern of VOF elements may be symmetric, ordered, random, and/or asymmetrical. Further, the pattern, size, shape, or spacing of the VOF elements may differ at strategic locations in the article, such as body gear, as dictated by the intended use of the article.


In various embodiments, at least a portion of the base material remains uncovered between adjacent heat-reflecting elements, and between adjacent VOF elements. Additionally, at least a portion of the base material may remain uncovered between both types of elements, such as at least 10-25%.


In various embodiments, the VOF elements may prevent or reduce contact between the heat reflecting elements and the underlying surface, such as a base layer or body surface. In various embodiments, the insulating material (including the base material, heat-reflecting elements, and VOF elements) may have a MVTR of at least 2000 g/m2/24 h (JIS 1099 A1). The insulating material may form all or a part of any article, such as used as body or outdoor gear, for example a coat, jacket, shirt, shoe, boot, slipper, base layer, glove, mitten, hat, scarf, pants, sock, tent, backpack or sleeping bag. In certain embodiments the heat-reflecting elements and the spacer element are positioned on the innermost surface of an article, for example on the innermost surface of a base layer, such as the innermost surface of a base layer facing toward the skin of a subject.



FIG. 4 illustrates a perspective view of a second example of an insulating material 400, including a base material 402, a plurality of heat-reflecting elements 404, and a plurality of VOF elements 406, in accordance with various embodiments. As illustrated, in some embodiments at least a portion of the VOF elements 406 may overlap with and/or overlay at least a portion of the heat-reflecting elements 404.



FIG. 5 is a digital image of a third example of an insulating material 500, including a base material 502, a plurality of heat-reflecting elements 504, and a plurality of VOF elements 506; and FIG. 6 is a digital image of a fourth example of an insulating material 600, including a base material 602, a plurality of heat-reflecting elements 604, and a plurality of VOF elements 606, in accordance with various embodiments. In some embodiments, the VOF elements 606 may include dyed or pigmented fibers.



FIGS. 7A, 7B, 7C, and 7D are heat escape maps measured with an IR thermal imaging camera, for base material with VOF elements (FIG. 7A), base material alone (FIG. 7B), base material with heat-reflecting elements (FIG. 7C), and base material with heat-reflecting elements and VOF elements (FIG. 7D), in accordance with various embodiments. These images were measured on circular material samples (approx. 6.9-cm-diameter) placed face down on an insulated hot plate assembly using a FLIR SC83000 HD Series high speed MWIR megapixel infrared camera. The insulated hot plate assembly consisted of a 0.125″ thick 6061 aluminum alloy plate as the test surface, which was placed on top of a silicone resistive heating pad (McMaster-Carr p/n 35765K708), which was on top of 2″ thick cork insulation. The test surface plate had slots cut into it in a rectangular shape to produce a uniform temperature on the test surface. The test surface was also painted matte black to approximate the emissivity of skin (εskin=0.95≈εblack paint (Parsons)=0.98). A variable transformer was adjusted to provide a steady-state surface temperature. (See, e.g., Incropera, F., DeWitt, D., Bergman, T., and Lavine, A., Fundamentals of Heat and Mass Transfer, 6th Edition, John Wiley & Sons, 2007.)


Also disclosed in various embodiments are methods of making an insulating material, which methods generally include coupling a plurality of heat-reflecting elements to a first side of a base material having a moisture vapor transfer rate (MVTR) of at least 2000 g/m2/24 h (JIS 1099 A1), each of the heat-reflecting elements having a heat-reflecting surface; and coupling a plurality of vertically oriented fiber (VOF) elements to the first side of the base material such that at least some of the plurality of VOF elements at least partially overlay at least some of the plurality of heat-reflecting elements. Each VOF element includes a plurality of fibers oriented substantially perpendicular to a surface of the base material.


In various embodiments, the heat-reflecting elements are coupled to the base material before the VOF elements are coupled to the base material. The heat-reflecting elements may be permanently coupled to the base material in a variety of ways, including, but not limited to laminating, gluing, heat pressing, printing, or welding, such as by hot air, radiofrequency or ultrasonic welding.


In various embodiments, the plurality of VOF elements may then be coupled to the first side of the base material by screen printing an adhesive followed by electrostatic deposition of short fibers. Other methods to add VOF elements include embroidering, weaving and knitting. For instance, in some embodiments, an adhesive, such as a single part or two-part catalyzed adhesive may be used to couple the VOF elements to the base material. The adhesive may be applied to the base material in a desired pattern using a printing process, and the fibers may then be deposited electrostatically on the base material. Un-adhered fibers may then be removed from the base material by vacuum.


In one specific, non-limiting example, the fibers may be dispensed from a hopper through a positive electrode grid, which may orient the fibers and accelerate them towards the base material surface. A grounded electrode may be positioned under the material surface, and the fibers may be vertically embedded in the adhesive in the areas in which it was applied to the base material, creating a plurality of VOF elements.


In another specific, non-limiting example, the adhesive may instead be applied to a transfer membrane, and the fibers may be electrostatically embedded in the adhesive on the transfer membrane, creating a plurality of VOF elements. The transfer membrane may then be used to apply the VOF elements to the base material.


Examples

In various embodiments, the insulating materials described herein may have superior insulating characteristics as compared to other insulating materials, including materials that include heat-reflecting materials without VOF elements. As shown in Table 1 below, four different base materials were tested using standard hot plate testing. Samples of the four different base materials were tested in three different configurations: no heat reflecting or VOF elements (“Fabric”), heat-reflecting elements only (“Fabric+heat-reflecting element”), and with both heat-reflecting and VOF elements (“Fabric+heat-reflecting element+vertically oriented fiber”). Heat flux (W) and dry heat transfer rate (W/m2° C.)) were measured, and an average insulation value (clo=0.155 K·m2·W−1) was calculated for each. As used herein, the term “heat” refers to thermal energy transported due to a temperature gradient (J or Cal). As used herein, the term “heat rate” refers to thermal energy transported per unit time (J/s=W). As used herein, the term “heat flux” refers to heat rate per unit area. As used herein, the term “thermal transmittance” refers to heat flux per unit temperature gradient (W/m2·K). As used herein, the term “thermal resistance” refers to the reciprocal of thermal transmittance (m2·K/W) and clo, which is 0.155 m2·K/W, is a unit of measure for insulation value. The results of testing of specific examples of limited conduction heat reflective materials is shown below in Table 1.









TABLE 1







Thermal Resistance Data Measured Using Standard Hotplate Testing













Fabric + heat-





reflecting




Fabric + heat-
element +




reflecting
vertically



Fabric
element
oriented fiber














Base fabric 053165





Total thermal
0.423 ± 0.003
0.403 ± 0.003
0.467 ± 0.003


resistance, Rct (clo)1


Thermal resistance of
0.068 ± 0.004
0.048 ± 0.003
0.112 ± 0.009


the fabric alone, Rcf


(clo)


Base fabric 033770


Total thermal
0.478 ± 0.010
0.425 ± 0.015
0.484 ± 0.008


resistance, Rct (clo)1


Thermal resistance of
0.123 ± 0.011
0.070 ± 0.015
0.129 ± 0.008


the fabric alone, Rcf


(clo)


Base fabric 031908


Total thermal
0.387 ± 0.013
0.376 ± 0.007
0.455 ± 0.011


resistance, Rct (clo)1


Thermal resistance of
0.032 ± 0.013
0.021 ± 0.007
0.100 ± 0.011


the fabric alone, Rcf


(clo)


Base fabric 060360


Total thermal
0.560 ± 0.033
0.559 ± 0.007
0.668 ± 0.015


resistance, Rct (clo)2


Thermal resistance of
0.047
0.046
0.155


the fabric alone, Rcf


(clo)






1Bare plate thermal resistance, Rcbp (clo) = 0.353 ± 0.002




2Bare plate thermal resistance, Rcbp (clo) = 0.514 (no standard deviation provided)







Dry heat transport data were measured in general accordance with ASTM F1868, Part A—Thermal Resistance. Tests were conducted on 4 different base fabrics, the same fabrics with heat-reflecting elements, and the same materials with heat-reflecting elements plus vertically oriented fiber. The results are shown in Table 1 as the total thermal resistance, Rct, and the thermal resistance of the fabric alone, Rcf. These values are given in clo units, and are also known as insulation values. In all cases, the insulation values are lower for the fabric+heat-reflecting element as compared to the same base fabric. When spacer elements (in this case, vertically oriented fiber elements) are added, however, the insulation values were greater than they are for the base fabric and for the fabric+heat-reflecting element by a substantial amount. Depending on the specific base material, insulation values of the disclosed insulating materials typically exhibit from 50% to 230% greater insulation values than the base materials from which they were constructed.









TABLE 2







Area-averaged Temperature from Heat Escape Maps











Temperature




Difference



Average Backside
from Base



Surface Temperature
Material


Material
(° C.)
(° C.)





Fabric (“Base”)
33.4



Fabric + vertically oriented fiber
32.5
0.9


(“VOF only”)


Fabric + heat-reflecting elements
32.3
1.1


(“OHR only”)


Fabric + heat-reflecting element +
29.7
3.7


vertically oriented fiber


(“OH3D”)










FIGS. 7A, 7B, 7C, and 7B show heat escape maps measured with an IR thermal imaging camera, for base fabric with VOF elements (FIG. 7A), base fabric alone (FIG. 7B), base fabric with heat-reflecting elements (FIG. 7C), and base fabric with heat-reflecting elements and VOF elements (FIG. 7D), in accordance with various embodiments. The circular samples were placed face down on an insulated hot plate assembly set at approximately 37° C. The thermal images were taken of the backside of each of the fabric samples. Thus, for the fabric samples that contain VOF, heat-reflecting elements, or both, these features face toward the hot plate and therefore cannot affect the sample emissivity toward the infrared camera. As a result, the measured signal is an accurate measure of the temperature of the backside of each fabric, and representative of the amount of heat that escapes through the fabric.


Area-averaged temperatures from the heat escape maps of FIG. 7 are shown in Table 2. The highest average temperature, and the temperature closest to the temperature of the hot plate, is 33.4° C. for the base fabric. Thus, the most heat escapes through the base fabric, which is the least insulating of the four fabrics measured. The next highest average temperature is 32.5° C. for the base fabric+vertically oriented fiber (“VOF only”), followed by 32.3° C. for the base fabric+heat-reflecting elements (“OHR only”). The lowest average temperature is 29.7° C. for the base fabric+heat-reflecting elements+vertically oriented fiber (“OH3D”). Thus, the least amount of heat escapes through this fabric, which is the most insulating of the four fabrics measured.


Most significantly, the base fabric containing heat-reflecting elements+vertically oriented fiber is more insulating than the base fabric by a surprising and unexpected amount. By adding vertically oriented fiber to the base fabric, sufficient heat is trapped to lower the backside average temperature by 0.9° C. (see Table 2). By adding heat-reflecting elements to the base fabric, sufficient heat is trapped to lower the backside average temperature by 1.1° C. By adding both elements to the base fabric, one might expect the combined effect would lead to a lower temperature of around 2° C. (0.9° C.+1.1° C.), or even less since the elements overlap. However, the combined effect is nearly twice this amount. The combined effect of VOF and heat-reflecting elements traps enough heat to lower the backside average temperature by 3.7° C.


Although certain embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope. Those with skill in the art will readily appreciate that embodiments may be implemented in a very wide variety of ways. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments be limited only by the claims and the equivalents thereof.

Claims
  • 1. An insulating material comprising: a base material having a moisture vapor transfer rate (MVTR) of at least 2000 g/m2/24 h (JIS 1099 A1);a plurality of heat-reflecting elements coupled onto a first side of the base material, wherein the first side of the base material is an innermost surface of the base material, each heat-reflecting element having a heat-reflecting surface positioned to reflect heat towards a wearer of the insulating material; anda plurality of spacer elements comprising vertically oriented fiber (VOF) elements, wherein at least some of the plurality of spacer elements at least partially overlay the heat-reflecting surfaces of at least some of the plurality of heat-reflecting elements, the at least some of the plurality of spacer elements attached to and extending from the first side of the base material, but not penetrating through the base material, and from the heat-reflecting surfaces to be directed toward and exposed to contact by the wearer of the insulating material, each spacer element sized and shaped to reduce contact of the heat-reflecting elements with an underlying surface or with the wearer.
  • 2. The insulating material of claim 1, wherein the spacer elements project from the first side of the base material about 0.2-2.0 mm.
  • 3. The insulating material of claim 1, wherein each VOF element comprises a plurality of fibers oriented substantially perpendicular to a surface of the base material.
  • 4. The insulating material of claim 3, wherein the fibers comprise nylon or polyester fibers.
  • 5. The insulating material of claim 3, wherein the fibers comprise wicking fibers.
  • 6. The insulating material of claim 3, wherein the fibers have an average linear density of 0.9-22 dtex.
  • 7. The insulating material of claim 1, wherein the heat-reflecting elements comprise metal, metallized plastic or metallic foil.
  • 8. The insulating material of claim 1, wherein a surface area ratio of heat-reflecting elements to base material is from 7:3 to 3:7.
  • 9. The insulating material of claim 1, wherein a surface area ratio of heat-reflecting elements to base material is from 6:4 to 4:6.
  • 10. The insulating material of claim 1, wherein at least a portion of the base material remains uncovered between adjacent heat-reflecting elements.
  • 11. The insulating material of claim 1, wherein at least a portion of the base material remains uncovered between adjacent spacer elements.
  • 12. The insulating material of claim 1, wherein at least a portion of the base material remains uncovered between adjacent heat-reflecting elements and between adjacent spacer elements.
  • 13. The insulating material of claim 1, wherein the spacer elements prevent contact between the heat reflecting elements and the underlying surface.
  • 14. The insulating material of claim 1, wherein the insulating material is part of a coat, jacket, shoe, boot, slipper, glove, mitten, hat, scarf, pants, sock, tent, backpack, or sleeping bag, shirt, pullover, or base layer.
  • 15. The insulating material of claim 1, wherein the heat-reflecting elements have an emissivity of about 0.04 or less.
  • 16. The insulating material of claim 1, wherein the heat-reflecting elements have an emissivity of 0.1 or less.
  • 17. An insulating material comprising: a base material having a moisture vapor transfer rate (MVTR) of at least 2000 g/m2/24 h (JIS 1099 A1);a plurality of heat-reflecting elements coupled to a first side of the base material, wherein the first side of the base material is an innermost surface of the base material, each heat-reflecting element having a heat-reflecting surface positioned to reflect heat towards a wearer of the insulating material; anda plurality of vertically oriented fiber (VOF) elements, wherein at least some of the plurality of VOF elements at least partially overlay the heat-reflecting surfaces of at least some of the plurality of heat-reflecting elements, the at least some of the plurality of VOF elements attached to and extending from the first side of the base material, but not penetrating through the base material, and from the heat-reflective surfaces to be directed toward and exposed to contact by the wearer of the insulating material, each VOF element comprising a plurality of fibers oriented substantially perpendicular to a surface of the base material;wherein the fibers comprise polyester fibers having an average length of 0.3-1.0 mm and an average diameter of 5-10 dtex;wherein the heat-reflecting elements comprise metallic plastic or metallic foil; andwherein at least a portion of the base material remains uncovered between adjacent heat-reflecting elements and between adjacent VOF elements.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the priority benefit of the earlier filing date of U.S. Provisional Application No. 62/573,154, filed Oct. 16, 2017, which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (154)
Number Name Date Kind
D92994 Aaronson May 1934 S
D107621 Stiglitz Dec 1937 S
D118109 Callahan Dec 1939 S
D119351 Katz May 1940 S
D129870 Maisch Oct 1941 S
D130877 Tips Dec 1941 S
2471008 Pretty Apr 1946 A
D154151 Ryan Jun 1949 S
D158550 Brenerman May 1950 S
D169305 DeGrazia Apr 1953 S
2695895 Barnard et al. Nov 1954 A
2759522 Limm et al. Aug 1956 A
3418668 Anderson Dec 1968 A
3577305 Hines et al. May 1971 A
3663182 Hamling May 1972 A
3800364 Kalwaites Apr 1974 A
3849802 Govaars Nov 1974 A
3917785 Kalwaiets et al. Nov 1975 A
3924929 Holmen et al. Dec 1975 A
3934065 Tung Jan 1976 A
4032681 Jonnes Jun 1977 A
4136222 Jonnes Jan 1979 A
4211261 Mehta et al. Jul 1980 A
4395455 Frankosky Jul 1983 A
4420521 Carr Dec 1983 A
4435442 Hefele Mar 1984 A
4463464 Bost et al. Aug 1984 A
4483021 McCall Nov 1984 A
4525406 Pollock Jun 1985 A
4569088 Frankenburg et al. Feb 1986 A
4569874 Kuznetz Feb 1986 A
4622253 Levy Nov 1986 A
4637949 Maekawa et al. Jan 1987 A
4712609 Iversen Dec 1987 A
4765323 Poettgen Aug 1988 A
4798754 Tomek Jan 1989 A
4856294 Scaringe et al. Aug 1989 A
4912778 Daniels Apr 1990 A
5098795 Webb et al. Mar 1992 A
5207852 Lightle et al. May 1993 A
5366785 Sawdai Nov 1994 A
D358734 Paskwietz et al. May 1995 S
5415222 Colvin May 1995 A
5520778 Sawdai May 1996 A
D404236 Bergwall et al. Jan 1999 S
5860163 Aldridge Jan 1999 A
D413731 Hannington Sep 1999 S
D414252 Orr Sep 1999 S
D414642 Williams Oct 1999 S
6009560 McKenney et al. Jan 2000 A
6031665 Carlson et al. Feb 2000 A
D428293 Williams Jul 2000 S
6110558 Billingsley et al. Aug 2000 A
6191056 Vogt et al. Feb 2001 B1
6242369 Vogt et al. Jun 2001 B1
6319599 Buckley Nov 2001 B1
6321386 Monica Nov 2001 B1
6341384 Hayes Jan 2002 B1
6427242 Bush et al. Aug 2002 B1
6511929 Vogt et al. Jan 2003 B1
D472419 Robbins, III Apr 2003 S
D477743 dePauw Jul 2003 S
6589631 Suzuki et al. Jul 2003 B1
6591560 Burke, III et al. Jul 2003 B2
D478494 Arnold Aug 2003 S
D478761 Robbins, III Aug 2003 S
D483187 Cheng Dec 2003 S
6687913 Aldridge Feb 2004 B2
6743498 Fourmeux Jun 2004 B2
D497072 Suero Oct 2004 S
6811852 Aiderman Nov 2004 B2
6824819 Vogt et al. Nov 2004 B2
6855410 Buckley Feb 2005 B2
6858068 Smith et al. Feb 2005 B2
6874336 Yarborough et al. Apr 2005 B2
D508180 Sneed Aug 2005 S
6934985 Sanders Aug 2005 B2
6978481 Mordecai et al. Dec 2005 B2
D518248 Northrop Mar 2006 S
7013496 Dunn Mar 2006 B2
7226879 Tilton et al. Jun 2007 B2
D548400 Boord Aug 2007 S
D551407 Caruso et al. Sep 2007 S
7399919 McCutcheon et al. Jul 2008 B2
7452833 Russell et al. Nov 2008 B2
D583569 Claudat Dec 2008 S
D583999 Middlebrooks Dec 2008 S
7465484 Handwerker Dec 2008 B2
D590949 Broyles Apr 2009 S
D596860 Doughty Jul 2009 S
D598166 Kemper Aug 2009 S
7581260 Underwood et al. Sep 2009 B2
7600269 Feduzi et al. Oct 2009 B2
D613948 Spritzer Apr 2010 S
7739749 Grilliot et al. Jun 2010 B2
D628005 Chapman et al. Nov 2010 S
7854017 Laton Dec 2010 B2
D630442 Sichel Jan 2011 S
D631262 Evans Jan 2011 S
D631670 Jackson Feb 2011 S
D637008 Frost May 2011 S
D638224 Ko et al. May 2011 S
8424119 Blackford Apr 2013 B2
8479322 Blackford Jul 2013 B2
8510871 Blackford Aug 2013 B2
8918919 Scholz Dec 2014 B2
20020073481 Creagan et al. Jun 2002 A1
20020166622 Weder Nov 2002 A1
20030027476 Vogt et al. Feb 2003 A1
20040128747 Bumbarger et al. Jul 2004 A1
20040261465 Yarborough et al. Dec 2004 A1
20050009429 Park et al. Jan 2005 A1
20050077618 McCutcheon et al. Apr 2005 A1
20050209663 Hamilton et al. Sep 2005 A1
20050251900 Harlacker Nov 2005 A1
20050252036 Laska Nov 2005 A1
20060051559 Sleeman et al. Mar 2006 A1
20060130367 Liu Jun 2006 A1
20070037034 Fisher et al. Feb 2007 A1
20070129767 Wahlstrand Jun 2007 A1
20070267583 Dodo Nov 2007 A1
20070267595 Dodo Nov 2007 A1
20070277806 Dodo Dec 2007 A1
20080030856 King Feb 2008 A1
20080099188 Touzov May 2008 A1
20080251062 Dodo Oct 2008 A1
20080257333 Dodo et al. Oct 2008 A1
20080282455 Jones et al. Nov 2008 A1
20080283038 Dodo Nov 2008 A1
20090000610 Dodo Jan 2009 A1
20090007313 Boorsma et al. Jan 2009 A1
20090209155 Goulet Aug 2009 A1
20090258180 Goulet Oct 2009 A1
20100020056 Le Roy et al. Jan 2010 A1
20100071119 Thatcher Mar 2010 A1
20100107657 Vistakula May 2010 A1
20100138983 Kim Jun 2010 A1
20100247855 Bletsos Sep 2010 A1
20100282433 Blackford Nov 2010 A1
20100326710 Zhang Dec 2010 A1
20110020599 Le Roy et al. Jan 2011 A1
20110036282 Cote Feb 2011 A1
20110107771 Crist et al. May 2011 A1
20110135899 Meltzer et al. Jun 2011 A1
20110138523 Layson et al. Jun 2011 A1
20110160691 Ng et al. Jun 2011 A1
20110203783 Blackford Aug 2011 A1
20110214221 Munda Sep 2011 A1
20120015155 Blackford Jan 2012 A1
20130042390 Blackford Feb 2013 A1
20150104604 Rock Apr 2015 A1
20150210032 Blackford Jul 2015 A1
20150223533 Blakely et al. Aug 2015 A1
20190008217 Cui et al. Jan 2019 A1
Foreign Referenced Citations (16)
Number Date Country
103534405 Jul 2015 CN
9409799 Apr 1995 DE
0917888 May 1999 EP
2073613 Oct 1981 GB
2294426 May 1996 GB
2414960 Dec 2005 GB
9749552 Dec 1997 WO
2002059414 Aug 2002 WO
DM064488 May 2003 WO
DM064044 Jul 2003 WO
2004061035 Jul 2004 WO
2006030254 Mar 2006 WO
DM067876 May 2006 WO
2008115143 Sep 2008 WO
2014120867 Jul 2014 WO
2018058062 Mar 2018 WO
Non-Patent Literature Citations (4)
Entry
Sunmore, Poe Yoga Mat, Sporting Goods Buyers' Guide, Spring 2008.
Castelli Insolito Radiation Jacket—3 Season Cycling Jacket; www.feedthehabit.com/road-biking/castelli-insolito-radiation-jacket-3-season-cycling-jacket/; Sep. 19, 2008.
Castelli Radiation Jacket; www.cyclingweekly.co.uk/archive/tech/322662/castelli-radiation-jacket-300.html; Mar. 10, 2009.
Notice for Reasons of Rejection filed in JP Patent Application No. 2020-519399, dated Nov. 25, 2022; 6 pages (including English translation).
Related Publications (1)
Number Date Country
20190110541 A1 Apr 2019 US
Provisional Applications (1)
Number Date Country
62573154 Oct 2017 US