Limited-use medical device

Information

  • Patent Grant
  • 9642671
  • Patent Number
    9,642,671
  • Date Filed
    Friday, July 18, 2014
    9 years ago
  • Date Issued
    Tuesday, May 9, 2017
    7 years ago
Abstract
A medical device including one or more components positioned to contact contaminants during use of the medical device. The one or more components including one or more limited-use portions transitionable upon use from an initial state, wherein the limited-use portion(s) exhibits a clean appearance, to a used state, wherein the limited-use portion(s) exhibits a contaminated appearance that visually indicates to a user that the at least one component is not further usable.
Description
BACKGROUND

Technical Field


The present disclosure relates to medical devices. More particularly, the present disclosure is directed to limited-use medical devices and medical devices including limited-use portions.


Background of the Related Art


Certain medical devices (or components thereof) are capable of being used multiple times, and are thus referred to as reusable devices (or reusable components), while other medical devices (or components thereof) are configured for single use, and are thus referred to as disposable devices (or disposable components). Many such reusable and disposable medical devices, and/or the components thereof, are designed for a pre-determined number of uses and/or for a pre-determined usage time. Use of these devices beyond their prescribed usage time or number of uses may result in failure of the device, damage to the device or surrounds, and/or injury to the patient or clinician. On the other hand, given the rising costs of performing medical procedures, clinician's have an incentive to maximize the reuse of medical devices (or components thereof).


SUMMARY

Like reference numerals may refer to similar or identical elements throughout the description of the figures. As shown in the drawings and described throughout the following description, as is traditional when referring to relative positioning on a surgical instrument, the term “proximal” refers to the end of the apparatus that is closer to the user and the term “distal” refers to the end of the apparatus that is farther away from the user. The term “clinician” refers to any medical professional (e.g., doctor, surgeon, nurse, or the like) performing a medical procedure. To the extent consistent, any of the aspects and features described herein may be used in conjunction with any or all of the other aspects and features described herein.


In accordance with an aspect of the present disclosure, a medical device may include at least one component positioned to contact contaminants during use of the medical device, the at least one component including at least one limited-use portion, the limited-use portion transitionable upon use from an initial state, wherein the limited-use portion exhibits a clean appearance, to a used state, wherein the limited-use portion exhibits a contaminated appearance that visually indicates to a user that the at least one component is not further usable.


In accordance with another aspect of the disclosure herein, the at least one component may be a jaw member of a surgical forceps.


In accordance with another aspect of the disclosure herein, the at least one component may be a disposable electrode assembly.


In accordance with another aspect of the disclosure herein, the disposable electrode assembly may be configured to conduct electrosurgical energy to tissue.


In accordance with another aspect of the disclosure herein, the at least one component may be a housing of an endoscopic medical device.


In accordance with another aspect of the disclosure herein, the at least one limited-use portion may be a contamination trap.


In accordance with another aspect of the disclosure herein, the contamination trap may include a plurality of grooves configured to trap bodily fluids and tissue remnants.


In accordance with another aspect of the disclosure herein, the contamination trap may have a window disposed thereon configured to allow a user to view contaminants within the contamination trap.


In accordance with another aspect of the disclosure herein, the contamination trap may include at least one indicator for indicating that the contamination trap is contaminated.


In accordance with another aspect of the disclosure herein, the at least one limited-use portion may be a color change material configured to exhibit a contaminated appearance in the used state.


In accordance with another aspect of the disclosure herein, the color change may be effected via contact of the at least one limited-use portion with at least one of blood, tissue, and fluids.


In accordance with another aspect of the disclosure herein, the color change material may be temperature-sensitive.


In accordance with another aspect of the disclosure herein, a method may include providing a medical device including at least one component, using the medical device to perform a surgical task, wherein, during use of the medical device, the at least one component comes into contact with contaminants, and visually displaying to a user an indication that the at least one component is not further usable after use of the medical device.


In accordance with another aspect of the disclosure herein, upon use of the medical device, at least one limited-use portion of the at least one component may be transitioned from an initial state, wherein the limited-use portion exhibits a clean appearance, to a used state, wherein the limited-use portion exhibits a contaminated appearance that visually indicates to the user that the at least one component is not further usable.


In accordance with another aspect of the disclosure herein, the at least one limited-use portion may be a contamination trap including a plurality of grooves configured to trap of bodily fluids and tissue remnants.


In accordance with another aspect of the disclosure herein, the contamination trap may have a window disposed thereon configured to allow a user to view contaminants within the contamination trap.


In accordance with another aspect of the disclosure herein, the contamination trap may include at least one indicator for indicating that the contamination trap is contaminated.


In accordance with another aspect of the disclosure herein, the at least one limited-use portion may be a color change material configured to exhibit a contaminated appearance in the used state.


In accordance with another aspect of the disclosure herein, the color change may be effected via contact of the at least one limited-use portion with at least one of blood, tissue, and fluids.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a perspective view of a medical device provided in accordance with the present disclosure;



FIG. 2 is a perspective view of an end effector assembly provided in accordance with the present disclosure and configured for use with the medical device of FIG. 1;



FIG. 3A is a perspective view of another a medical device provided in accordance with the present disclosure, shown in an unused condition;



FIG. 3B is a perspective view of the medical device of FIG. 3A, shown in a used condition;



FIG. 4A is a perspective view of an end effector assembly provided in accordance with the present disclosure and configured for use with the medical device of FIG. 1, shown in an unused condition;



FIG. 4B is an perspective view of the end effector assembly of FIG. 4A, shown in a used condition;



FIG. 5A is an enlarged, side view of a limited-use portion provided in accordance with the present disclosure and configured for incorporation into any of the medical devices or end effector assemblies of FIGS. 1-4B;



FIG. 5B is an enlarged, cross-sectional view of the limited-use portion of FIG. 5A;



FIG. 6 is an enlarged, side view of another limited-use portion provided in accordance with the present disclosure and configured for incorporation into any of the medical devices or end effector assemblies of FIGS. 1-4B;



FIG. 7 is an enlarged, side view of another limited-use portion provided in accordance with the present disclosure and configured for incorporation into any of the medical devices or end effector assemblies of FIGS. 1-4B; and



FIG. 8 is a perspective, exploded view of another medical device provided in accordance with the present disclosure.





DETAILED DESCRIPTION

Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings; however, the disclosed embodiments are merely examples of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.


Referring now to FIG. 1, a forceps 10 for use in connection with endoscopic surgical procedures is shown, although forceps 10 may also be configured for use in connection with traditional open surgical procedures. Alternatively, the present disclosure may be embodied in any other suitable medical devices such as, but not limited to scissors, staplers, probes, syringes, and any other electrical, mechanical, or electromechanical medical devices.


Continuing with reference to FIG. 1, forceps 10 defines a longitudinal axis “A-A” and includes a housing 20, a handle assembly 30, a rotating assembly 70, a trigger assembly 80 and an end effector assembly 100. End effector assembly 100 includes first and second jaw members 110, 120, respectively, configured to pivot relative to one another between a spaced-apart position and an approximated position for grasping tissue therebetween. Forceps 10 further includes a shaft 12 having a distal end 14 configured to mechanically engage end effector assembly 100 and a proximal end 16 that mechanically engages housing 20. Forceps 10 also includes a cable 310 that connects forceps 10 to a generator (not shown) or other suitable power source, although forceps 10 may alternatively be configured as a battery powered instrument. Cable 310 includes wires extending therethrough and into housing 20 to ultimately connect the source of energy (not shown) to tissue-contacting surfaces 216, 226 (FIG. 2) of jaw members 110, 120, respectively, to conduct energy therebetween and through tissue grasped between jaw members 110, 120 to treat tissue. As disclosed above, the medical device is described herein as an electrosurgical forceps 10, however, the medical device may also be a mechanical forceps or other medical device or a device with electrical or moving parts.


With continued reference to FIG. 1, handle assembly 30 includes a fixed handle 50 and a moveable handle 40. Fixed handle 50 is integrally associated with housing 20 and handle 40 is moveable relative to fixed handle 50. Rotating assembly 70 is rotatable in either direction about a longitudinal axis “A-A” to rotate end effector assembly 100 about longitudinal axis “A-A.” The housing 20 houses the internal working components of the forceps 10.


Referring FIG. 2, end effector assembly 100 is shown attached at a distal end 14 of shaft 12 and includes a pair of opposing jaw members 110 and 120. Each of the first and second jaw members 110, 120 includes a fixed jaw frame 112, 122, respectively, and a replaceable component 210, 220, respectively, selectively engagable with the respective jaw frame 112, 122 to form the fully assembled jaw members 110, 120, respectively. However, jaw members 110, 120 of end effector assembly 100 may also be configured as integral components, e.g., wherein components 210, 220 are fixedly engaged or otherwise integrated with jaw frames 112, 122 of jaw members 110, 120, respectively.


End effector assembly 100 is designed as a unilateral assembly, i.e., where jaw member 120 is fixed relative to shaft 12 and jaw member 110 is moveable relative to both shaft 12 and fixed jaw member 120. However, end effector assembly 100 may alternatively be configured as a bilateral assembly, i.e., where both jaw member 110 and jaw member 120 are moveable relative to one another and with respect to shaft 12.


Each jaw member 110, 120 defines an electrically conductive tissue-contacting surface 216, 226 configured to connect to the energy source (not shown), e.g., via the wires of cable 310 (FIG. 1), for conducting energy therebetween and through tissue grasped between jaw members 110, 120 to treat tissue. In some embodiments, a knife assembly (not shown) is disposed within shaft 12 and a knife channel (not shown) is defined within one or both of jaw members 110, 120, respectively, to permit reciprocation of a knife blade (not shown) therethrough for mechanically cutting tissue grasped between jaw members 110, 120. In such an embodiment, trigger 82 of trigger assembly 80 (see FIG. 1) is operable to advance the knife blade (not shown) between a retracted position, wherein the knife blade (not shown) is disposed within shaft 12, and an extended position, wherein the knife blade (not shown) extends between jaw members 110, 120 to cut tissue grasped therebetween. End effector assembly 100 may also be adapted for electrical cutting via an electrical cutting insert 190 connected to the source of energy (not shown), e.g., via the wires of cable 310 (FIG. 1), thus obviating the need for a knife assembly (not shown). Further, end effector assembly 100 may be adapted for both mechanical cutting and electrical cutting, thus allowing a user to select a mode of operation best suited for the particular surgical procedure to be performed.


Referring again to FIG. 1, moveable handle 40 of handle assembly 30 is ultimately connected to a drive assembly (not explicitly shown) that, together, mechanically cooperate to impart movement of jaw members 110 and 120 between a spaced-apart position and an approximated position to grasp tissue between tissue-contacting surfaces 216 and 226 of jaw members 110, 120, respectively. As shown in FIG. 1, moveable handle 40 is initially spaced-apart from fixed handle 50 and, correspondingly, jaw members 110, 120 are disposed in the spaced-apart position. Moveable handle 40 is compressible from this initial position to a compressed position corresponding to the approximated position of jaw members 110, 120.


With reference generally to FIGS. 3A-8, various embodiments of medical devices, or components thereof, are shown including one or more limited-use portions. Generally, these limited-use portions are configured to alert the user that the device (or component thereof) is not to be used further or cannot be used further. The alert scheme may be a visual alert, a tactile alert, and audio alert, any other suitable alert scheme, or any combination thereof. For example, these limited-use portions may be configured for a single use such that, after performing a medical procedure, the medical devices incorporating such limited-use portions are noticeably contaminated or appear contaminated such that the user is alerted to perceived issues of reuse. Further, although the limited-use portions are described below as being incorporated into different components and/or features of particular example medical devices to inhibit reuse of these medical devices, it is contemplated that the limited-used portions be incorporated, attached, or otherwise coupled to any suitable component(s) of any suitable medical device for similar purposes.


As shown in FIGS. 3A and 3B, a forceps 300 similar to forceps 10 (FIG. 1) is shown including one or more limited-use portions 303. Limited-use portions 303 may be incorporated into outer or externally-disposed components or features of forceps 300. Incorporating limited-use portions 303 into the outer or externally-disposed components of forceps 300 is advantageous in that the externally-visible limited-use portions 303 provide the user with a clear visual indication that forceps 300 is contaminated (or appears contaminated) and should not be used. As discussed in more detail below, limited-use portions 303 may include any suitable contamination trap or indicator such as, but not limited to, blood (or other contamination) traps, blood (or other bodily or surgical fluid) sensitive materials, absorptive materials, etc.


With continued reference to FIGS. 3A and 3B, as mentioned above, forceps 300 is similar to forceps 10 (FIG. 1) and, thus, will not be described in detail herein for purposes of brevity. Limited-use portion 303 may be incorporated into, e.g., formed integrally with, disposed within, or otherwise attached or coupled to, housing 320, shaft 312, fixed handle 350, and/or any other suitable externally-disposed component of medical device 300.


In one embodiment, e.g., prior to use when forceps 300 is in a first state, as shown in FIG. 3A, limited-use portions 303 exhibit an initial appearance in which limited-use portions 303 substantially blend into the surrounding components of forceps 300 or otherwise appear as innocuous portions of forceps 300. As shown in FIG. 3B, after a prescribed use of forceps 300 wherein limited-use portions 303 come into contact with blood, contaminants, fluids, etc., one or more of the limited-use portions 303 are transitioned to a second state to exhibit a used appearance in which the limited-use portions 303 exhibit actual or perceived contamination, e.g., such that the limited-use portions 303 are visibly changed in color, state, appearance, configuration, and/or content, thereby indicating that forceps 300 should no longer be used.


While the above embodiment describes limited-use portion 303 being disposed on an outer surface of the medical device 300, it should be understood that limited-use portions 303 may also or alternatively be disposed on an interior portion of any suitable medical device that is exposed to contamination during use. For example, a compartment trap or oubliette may be formed on the inside of forceps 300 to trap blood or similar bodily fluids. Other embodiments of limited-use portions as described herein may also be employed internally. Particular embodiments of limited-use portions 303 configured to provide the appearance of contamination after use are described in detail below.


Referring to FIGS. 4A and 4B, an end effector assembly 400 similar to end effector assembly 100 (FIG. 1) and configured for use with forceps 10 (FIG. 1) is shown. As end effector assembly 400 is similar to end effector assembly 100 (FIG. 1), end effector 400 will not be described in detail herein for purposes of brevity. End effector assembly 400 may include one or more limited-use portions 403. Limited-use portions 403, which are included, integrated, or disposed within portions or components of end effector assembly 400, e.g., of either or both of jaw members 410, 420 or portions thereof, are configured such that, once used beyond a prescribed limit (such as, but not limited to, a set amount of uses and/or an amount of time being activated for use), the limited-use portions 403, and hence the end effector assembly 400, appear contaminated beyond a point of safe use, thus inhibiting or cautioning a user from further using end effector assembly 400. A dimension and/or configuration of limited use portions 403 may be modified to define the prescribed limit. Similarly, as described above with respect to forceps 300 (FIGS. 3A-3B), limited-use portions 403 are configured to transition from an first state (FIG. 4A) to a second state (FIG. 4B) after use, e.g., after contact with blood, contaminants, fluids, etc., such that the user is visually alerted to the fact that end effector assembly 400 should no longer be used.


Various embodiments of limited-use portions which may be incorporated into medical devices or components thereof, e.g., as limited-use portions 303, 403 (FIGS. 3A-3B and 4A-4B, respectively), are shown and described below with reference to FIGS. 5A-7. Other suitable configurations are also contemplated. In each of these embodiments, the limited-use portions are configured to trap contaminants, display trapped contaminants or provide an appearance of trapped contaminants, and/or transition to a different state upon contact with blood, tissue, tissue remnants, fluids, and/or any other contaminants or surgical materials encountered during typical use of a surgical device.


Referring to FIGS. 5A and 5B, an embodiment of a limited-use portion 500 including a contamination trap 503 is shown. Limited-use portion 500 includes contamination trap 503 that has grooves 505 for trapping tissue remnants, blood, and other bodily fluids encountered during surgery. The grooves 505 are suitably designed to make sterilization and cleaning exceedingly difficult and provide a clear visual indication of how contaminated the limited-use portion 500 has become after use, e.g., after a surgical procedure. The grooves 505 are simplified representations and do not indicate the only groove configuration disclosed herein. For example, grooves 505 may be misaligned, non-straight, curved, asymmetric, angled towards each other, a patterned feature, and/or walls that are specifically configured to make cleaning difficult.


Referring to FIG. 6, another limited-use portion 600 including a contamination trap 603 having a window 605 covering at least a portion of the contamination trap 603 is shown. Contamination trap 603 extends beyond window 605 on at least one side thereof to allow the passage of fluid and/or solid contaminants into trap 603 while inhibiting at least some fluid and/or solid contaminants from leaving contamination trap 603 once disposed therein. Window 605 allows the user to see into contamination trap 603, while sufficiently obscuring access to contamination trap 603 for cleaning or removal of contaminants. A window similar to window 605 may also be disposed about contamination trap 503 (FIGS. 5A-5B), for similar purposes.


Referring to FIG. 7, another limited-use portion 700 including a contamination trap 703 is shown. Contamination trap 703 includes a sponge-like or otherwise absorptive material configured to soak in contaminants. The sponge-like contamination trap 703 exhibits at least some of the contaminants absorbed therein while also being difficult to clean after contamination from a surgical procedure, thus visually alerting a user to the fact that the device incorporating limited-use portion 700 should no longer be used.


Referring to FIG. 8, another embodiment of a forceps 800 is shown having a removable electrode assembly 801 with a limited-use portion including a contamination trap 803 disposed thereon. Contamination trap 803 may be configured similar to any of the contamination traps described above. As shown in FIG. 8, the limited-use portion 803 is disposed on an upper portion of electrode 809 of electrode assembly 801 such that the limited-use portion 803 is at least partially sandwiched between jaw member 805 and electrode 809 when the disposable electrode assembly 801 is attached to the forceps 800. In such an embodiment, the contamination trap 803 becomes contaminated during use and forces the user to remove electrode assembly 801 from forceps 800 to attempt to clean contamination trap 803. As contamination trap 803 inhibits cleaning, the user would ultimately be inclined to discard electrode assembly 801 and provide a new electrode for use with forceps 800. Additionally or alternatively, electrode assembly 801 may be configured to break upon removal from the forceps 800, in which case, removing electrode assembly 801 in an attempt to clean contamination trap 803 will break electrode assembly 801 and substantially prohibit reuse of the electrode assembly 801.


As also shown in FIG. 8, a limited-use portion including a heat sensitive material, such as a plastic or polymer, which changes state (e.g., color) to indicate that the device has been used may also be provided. For example, flex joint 811, or electrode substrate 813 may include the heat sensitive material such that changes the appearance of flex joint 811 or substrate 813. Upon changing color, the flex joint 811 or substrate 813 may exhibit an appearance of contamination, e.g., flex joint 811 or substrate 813 or a portion thereof may turn the color of blood or exhibit a contaminant-like pattern. Other portions of the forceps 800 may also include similar features. Likewise, any of the other medical devices described herein or any other suitable medical device may include such features.


The limited-use portions of any or all of the above-described embodiments may also include a sterilization sensitive ink that reveals a message upon an attempt to sterilize the limited-use portion, or after use. For example, flex joint 811 may include a message such as “Do Not Use” that appears after a re-sterilization or use. Any suitable message may be written or engraved with sterilization cycle sensitive materials. Also, a blood-sensitive ink, bodily fluid-sensitive ink, tissue-sensitive ink, etc., may be used to discolor or re-pattern the limited-use portion to make the device appear to be contaminated inhibiting further use.


It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached figures are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.

Claims
  • 1. A medical device, comprising: at least one component configured to contact contaminants during use of the medical device; anda first limited-use portion associated with the at least one component and configured to transition during use from a first state, wherein the first limited-use portion exhibits a clean appearance, to a second state, wherein the first limited-use portion exhibits a contaminated appearance that visually indicates to a user that the at least one component is not further usable, the first limited-use portion defining a cavity within the at least one component and including a transparent window covering a portion of the cavity to define an opening between the transparent window and an outer surface of the at least one component, the opening configured to allow passage of contaminants therethrough and into the cavity.
  • 2. The medical device of claim 1, wherein the at least one component is a jaw member of a forceps.
  • 3. The medical device of claim 1, wherein the at least one component is a disposable electrode assembly.
  • 4. The medical device of claim 3, wherein the disposable electrode assembly is configured to conduct electrosurgical energy to tissue.
  • 5. The medical device of claim 1, wherein the at least one component is a housing of an endoscopic medical device.
  • 6. The medical device of claim 1, further comprising a second limited-use portion associated with the at least one component.
  • 7. The medical device of claim 6, wherein the second limited-use portion includes a plurality of grooves configured to trap bodily fluids and tissue remnants.
  • 8. The medical device of claim 1, further comprising a second limited-use portion having a color change material associated with the at least one component and configured to transition during use from a first state, wherein the second limited-use portion exhibits a first appearance, to a second state, wherein the second limited-use portion exhibits a second appearance that visually indicates to a user that the at least one component is not further usable.
  • 9. The medical device of claim 8, wherein the color change material is configured to change color upon making contact with at least one of blood, tissue, or fluids.
  • 10. The medical device of claim 8, wherein the color change material is temperature-sensitive such that the color change material changes color in response to a change in temperature.
  • 11. The medical device of claim 1, wherein the transparent window is configured to prevent passage of fluids therethrough.
  • 12. A method, comprising: providing a medical device including at least one component;using the medical device to perform a surgical task, wherein, during use of the medical device, a first limited-use portion associated with the at least one component comes into contact with contaminants such that the contaminants are captured within a cavity defined within the at least one component; andviewing the contaminants captured within the cavity through a transparent window that partially covers the cavity thereby alerting a user that the at least one component is not further usable after use of the medical device,wherein an opening is defined between the transparent window and an outer surface of the at least one component, and wherein the contaminants move into the cavity via the opening.
  • 13. The method of claim 12, further comprising capturing the contaminants within a plurality of grooves defined in the at least one component, wherein the plurality of grooves is configured to trap bodily fluids and tissue remnants.
  • 14. The method of claim 12, further comprising changing a color of a second limited-use portion associated with the at least one component by contacting the second limited-use portion with the contaminants.
  • 15. The method of claim 12, wherein the transparent window is configured to prevent passage of fluids therethrough.
CROSS REFERENCE TO RELATED APPLICATION

The present application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/884,558, filed on Sep. 30, 2013, the entire contents of which are incorporated herein by reference.

US Referenced Citations (142)
Number Name Date Kind
3678229 Osika Jul 1972 A
4016881 Rioux et al. Apr 1977 A
D249549 Pike Sep 1978 S
4311145 Esty et al. Jan 1982 A
D263020 Rau, III Feb 1982 S
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
D298353 Manno Nov 1988 S
4781683 Wozniak et al. Nov 1988 A
D299413 DeCarolis Jan 1989 S
D343453 Noda Jan 1994 S
D348930 Olson Jul 1994 S
D349341 Lichtman et al. Aug 1994 S
5359993 Slater et al. Nov 1994 A
D354564 Medema Jan 1995 S
D358887 Feinberg May 1995 S
D384413 Zlock et al. Sep 1997 S
5700270 Peyser et al. Dec 1997 A
5779699 Lipson Jul 1998 A
H1745 Paraschac Aug 1998 H
5814043 Shapeton Sep 1998 A
D402028 Grimm et al. Dec 1998 S
D408018 McNaughton Apr 1999 S
D416089 Barton et al. Nov 1999 S
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
H1904 Yates et al. Oct 2000 H
D449886 Tetzlaff et al. Oct 2001 S
D453923 Olson Feb 2002 S
D454951 Bon Mar 2002 S
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
H2037 Yates et al. Jul 2002 H
D465281 Lang Nov 2002 S
D466209 Bon Nov 2002 S
D493888 Reschke Aug 2004 S
D496997 Dycus et al. Oct 2004 S
D499181 Dycus et al. Nov 2004 S
D502994 Blake, III Mar 2005 S
D509297 Wells Sep 2005 S
6994707 Ellman et al. Feb 2006 B2
D525361 Hushka Jul 2006 S
D531311 Guerra et al. Oct 2006 S
D533274 Visconti et al. Dec 2006 S
D533942 Kerr et al. Dec 2006 S
D535027 James et al. Jan 2007 S
7176030 Faries, Jr. et al. Feb 2007 B2
D538932 Malik Mar 2007 S
D541418 Schechter et al. Apr 2007 S
D541611 Aglassinger May 2007 S
D541938 Kerr et al. May 2007 S
D545432 Watanabe Jun 2007 S
D547154 Lee Jul 2007 S
7244252 Berndt Jul 2007 B2
D564662 Moses et al. Mar 2008 S
D567943 Moses et al. Apr 2008 S
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
D582038 Swoyer et al. Dec 2008 S
D617900 Kingsley et al. Jun 2010 S
D617901 Unger et al. Jun 2010 S
D617902 Twomey et al. Jun 2010 S
D617903 Unger et al. Jun 2010 S
D618798 Olson et al. Jun 2010 S
D621503 Otten et al. Aug 2010 S
D627462 Kingsley Nov 2010 S
D628289 Romero Nov 2010 S
D628290 Romero Nov 2010 S
D630324 Reschke Jan 2011 S
D649249 Guerra Nov 2011 S
D649643 Allen, IV et al. Nov 2011 S
8132086 Park et al. Mar 2012 B2
D661394 Romero et al. Jun 2012 S
8522626 Woodcock Sep 2013 B2
8535311 Schall Sep 2013 B2
8540712 Mueller Sep 2013 B2
8546999 Houser et al. Oct 2013 B2
8579177 Beetel Nov 2013 B2
8679140 Butcher Mar 2014 B2
RE44834 Dumbauld et al. Apr 2014 E
8702237 Heacock et al. Apr 2014 B2
20020165549 Owusu-Akyaw et al. Nov 2002 A1
20060069305 Couvillon, Jr. Mar 2006 A1
20090065565 Cao Mar 2009 A1
20100280511 Rachlin et al. Nov 2010 A1
20110009859 Livneh Jan 2011 A1
20110306972 Widenhouse et al. Dec 2011 A1
20120191091 Allen Jul 2012 A1
20120205419 Weir et al. Aug 2012 A1
20120248167 Flanagan et al. Oct 2012 A1
20130018371 Twomey Jan 2013 A1
20130046303 Evans et al. Feb 2013 A1
20130181033 Shelton, IV et al. Jul 2013 A1
20130186933 Shelton, IV et al. Jul 2013 A1
20130245623 Twomey Sep 2013 A1
20130247343 Horner et al. Sep 2013 A1
20130253489 Nau, Jr. et al. Sep 2013 A1
20130255063 Hart et al. Oct 2013 A1
20130267948 Kerr et al. Oct 2013 A1
20130267949 Kerr Oct 2013 A1
20130267950 Rosa et al. Oct 2013 A1
20130274736 Garrison Oct 2013 A1
20130282010 McKenna et al. Oct 2013 A1
20130282024 Blumenkranz Oct 2013 A1
20130289558 Reid, Jr. et al. Oct 2013 A1
20130289559 Reid, Jr. Oct 2013 A1
20130289560 DeCarlo et al. Oct 2013 A1
20130289561 Waaler et al. Oct 2013 A1
20130296848 Allen, IV et al. Nov 2013 A1
20130296854 Mueller Nov 2013 A1
20130296856 Unger et al. Nov 2013 A1
20130296922 Allen, IV et al. Nov 2013 A1
20130296923 Twomey et al. Nov 2013 A1
20130304058 Kendrick Nov 2013 A1
20130304059 Allen, IV et al. Nov 2013 A1
20130304066 Kerr et al. Nov 2013 A1
20130310832 Kerr et al. Nov 2013 A1
20130325057 Larson et al. Dec 2013 A1
20130331837 Larson Dec 2013 A1
20130338666 Bucciaglia et al. Dec 2013 A1
20130338693 Kerr et al. Dec 2013 A1
20130345701 Allen, IV et al. Dec 2013 A1
20130345706 Garrison Dec 2013 A1
20130345735 Mueller Dec 2013 A1
20140005663 Heard et al. Jan 2014 A1
20140005666 Moua et al. Jan 2014 A1
20140025052 Nau, Jr. et al. Jan 2014 A1
20140025053 Nau, Jr. et al. Jan 2014 A1
20140025059 Kerr Jan 2014 A1
20140025060 Kerr Jan 2014 A1
20140025066 Kerr Jan 2014 A1
20140025067 Kerr et al. Jan 2014 A1
20140025070 Kerr et al. Jan 2014 A1
20140025073 Twomey et al. Jan 2014 A1
20140031821 Garrison Jan 2014 A1
20140031860 Stoddard et al. Jan 2014 A1
20140046323 Payne et al. Feb 2014 A1
20140066910 Nau, Jr. Mar 2014 A1
20140066911 Nau, Jr. Mar 2014 A1
20140074091 Arya et al. Mar 2014 A1
20140100564 Garrison Apr 2014 A1
20140100568 Garrison Apr 2014 A1
Foreign Referenced Citations (88)
Number Date Country
201299462 Sep 2009 CN
2415263 Oct 1975 DE
02514501 Oct 1976 DE
2627679 Jan 1977 DE
03423356 Jun 1986 DE
03612646 Apr 1987 DE
8712328 Feb 1988 DE
04303882 Feb 1995 DE
04403252 Aug 1995 DE
19515914 Jul 1996 DE
19506363 Aug 1996 DE
29616210 Nov 1996 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
19946527 Jul 2001 DE
20121161 Apr 2002 DE
10045375 Oct 2002 DE
202007009165 Aug 2007 DE
202007009317 Aug 2007 DE
202007009318 Aug 2007 DE
10031773 Nov 2007 DE
202007016233 Jan 2008 DE
19738457 Jan 2009 DE
102004026179 Jan 2009 DE
102008018406 Jul 2009 DE
1281878 Feb 2003 EP
1159926 Mar 2003 EP
61-501068 Sep 1984 JP
10-24051 Jan 1989 JP
11-47150 Jun 1989 JP
6-502328 Mar 1992 JP
5-5106 Jan 1993 JP
05-40112 Feb 1993 JP
0006030945 Feb 1994 JP
6-121797 May 1994 JP
6-285078 Oct 1994 JP
6-511401 Dec 1994 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
8-56955 May 1996 JP
08252263 Oct 1996 JP
8-289895 Nov 1996 JP
8-317934 Dec 1996 JP
8-317936 Dec 1996 JP
9-10223 Jan 1997 JP
09000538 Jan 1997 JP
9-122138 May 1997 JP
0010000195 Jan 1998 JP
10-155798 Jun 1998 JP
11-47149 Feb 1999 JP
11-070124 Mar 1999 JP
11-169381 Jun 1999 JP
11-192238 Jul 1999 JP
11244298 Sep 1999 JP
2000-102545 Apr 2000 JP
2000-135222 May 2000 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001008944 Jan 2001 JP
2001-29355 Feb 2001 JP
2001029356 Feb 2001 JP
2001-03400 Apr 2001 JP
2001128990 May 2001 JP
2001-190564 Jul 2001 JP
2002-136525 May 2002 JP
2002-528166 Sep 2002 JP
2003-116871 Apr 2003 JP
2003-175052 Jun 2003 JP
2003245285 Sep 2003 JP
2004-517668 Jun 2004 JP
2004-528869 Sep 2004 JP
2005-152663 Jun 2005 JP
2005-253789 Sep 2005 JP
2006-015078 Jan 2006 JP
2006-501939 Jan 2006 JP
2006-095316 Apr 2006 JP
2011125195 Jun 2011 JP
401367 Nov 1974 SU
0036986 Jun 2000 WO
0059392 Oct 2000 WO
0115614 Mar 2001 WO
0154604 Aug 2001 WO
02045589 Sep 2002 WO
2006021269 Mar 2006 WO
2005110264 Apr 2006 WO
2008040483 Apr 2008 WO
2011018154 Feb 2011 WO
Non-Patent Literature Citations (51)
Entry
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler.
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier.
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Schmaltz.
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Ryan.
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Sremcich.
U.S. Appl. No. 13/731,674, filed Dec. 31, 2012, Siebrecht.
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument”; Innovations That Work, Jun. 2003.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
Tinkcler L.F., “Combined Diathermy and Suction Forceps”, Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447.
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC; Date: Aug. 2003.
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000.
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004.
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999.
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878.
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties At VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427.
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002.
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801.
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002.
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466.
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157.
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001.
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24.
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003.
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004.
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000.
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000.
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999.
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000.
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005.
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C.
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999.
Related Publications (1)
Number Date Country
20150094714 A1 Apr 2015 US
Provisional Applications (1)
Number Date Country
61884558 Sep 2013 US