The present application generally relates to vehicle suspension systems. In particular, the present application relates to dampers having a system to reduce impulse forces as the vehicle suspension system experiences a jounce event or a recoil event. Dampers (i.e. dashpots, hydraulic shock absorbers, etc.) dissipate kinetic energy as part of a vehicle suspension system. Dampers often include a housing, end caps, a piston, and a rod that is coupled to the piston. Energy is dissipated as hydraulic fluid flows along a hydraulic circuit (e.g., between a first chamber within the housing to a second chamber within the housing). The piston may include a plurality of orifices that are covered with a shim stack having a plurality of compressed shims.
As the piston moves through the housing, hydraulic fluid is forced from a first chamber, through the piston, and into the second chamber. Specifically, pressurized hydraulic fluid is forced through the orifices within the piston, deflects a portion of the shims to create an opening, and flows into the second chamber by passing through the opening. Such traditional dampers provide damping forces that are constant between a first end of stroke (e.g., extension) and a second end of stroke (e.g., compression). Where the vehicle interacts with an obstacle, a force is imparted into the piston through the rod of the damper. The piston translates toward an end of the damper and may impart a large impulse force on the end cap. Such large forces may cause damage to the piston, the end cap, the walls of the housing, or still other components of the damper assembly. Large impulse forces are also transferred to occupants within the vehicle.
Traditional dampers may include a limiting system that absorbs or dissipates energy thereby reducing the impulse forces imparted on occupants of the vehicle. Some limiting systems absorb and store energy (e.g., using a spring, a gas chamber, etc.) as the piston moves toward the end of stroke. Such a spring may produce up to 30,000 pounds of force with one inch of displacement. The stored energy is thereafter transferred to another component (e.g., the piston, the rod, etc.) as the piston moves toward the opposing end of the housing. While still other limiting systems dissipate energy, such systems provide flow paths through flow orifices within the primary piston and along the damper piston. These limiting systems are susceptible to obstruction due to debris and may generate inconsistent damping forces.
One embodiment of the present disclosure relates to a damper assembly. The damper assembly includes a tubular member, a rod, a primary piston, a secondary piston, and resilient member. The tubular member includes a sidewall and a cap positioned at an end of the sidewall. The sidewall and the cap define an inner volume. The sidewall includes a first portion fixedly coupled with a second portion of the sidewall. The first portion and the second portion define a shoulder of the sidewall. The rod extends within the inner volume. The primary piston is positioned within the inner volume and coupled to the rod. The primary piston defines a first contact surface. The secondary piston has a second contact surface, an opposing second surface, and an inner cylindrical face that receives the rod. The secondary piston defines a channel extending between the inner cylindrical face and an outer periphery of the secondary piston. The primary piston and the secondary piston separate the inner volume into a first working chamber, a second working chamber, and a recoil chamber. The resilient member is disposed between the secondary piston and the cap and thereby positioned to bias the secondary piston into direct engagement with the shoulder. The first contact surface and the channel are configured to cooperatively define a flow conduit upon engagement between the primary piston and the secondary piston. The second contact surface is configured to engage the first contact surface such that an open flow path is formed from the recoil chamber through (i) an aperture of the secondary piston and (ii) the flow conduit, upon engagement between the primary piston and the secondary piston.
Another embodiment of the present disclosure relates to a damper assembly. The damper assembly includes a housing, a primary piston, and a limiter. The housing has an end cap and defines an inner volume. The housing includes a first portion fixedly coupled with a second portion. A transition between the first portion and the second portion defines a shoulder. The primary piston is positioned within the housing. The limiter is positioned between the primary piston and the end cap. The limiter includes a damper piston and a resilient member. The damper piston has a contact surface, an opposing second surface, and an inner cylindrical face. The primary piston and the damper piston separate the inner volume into a first working chamber, a second working chamber, and a recoil chamber. The resilient member is disposed within the recoil chamber, between the opposing second surface of the damper piston and the end cap. The resilient member is thereby positioned to bias the damper piston into direct engagement with the shoulder. The rod is coupled to the primary piston and extends past the inner cylindrical face. The damper piston defines a channel extending laterally outward between the inner cylindrical face and an outer periphery of the damper piston across the contact surface. The primary piston and the channel are configured to cooperatively define a first flow conduit upon engagement between the primary piston and the damper piston. An aperture of the damper piston defines a second flow conduit. The first flow conduit and the second flow conduit cooperate to define an open flow path from the recoil chamber.
Another embodiment of the present disclosure relates to a damper assembly. The damper assembly includes a housing, a primary piston, and a limiter. The housing has an end cap and defines an inner volume. The housing includes a first portion fixedly coupled with a second portion of the housing. A transition between the first portion and the second portion defines a shoulder of the housing. The primary piston is positioned within the housing. The limiter is positioned between the primary piston and the end cap. The limiter includes a damper piston, a resilient member, and a rod. The damper piston has a contact surface, an opposing second surface, and an inner cylindrical face. The primary piston and the damper piston separate the inner volume into a first working chamber, a second working chamber, and a recoil chamber. The resilient member is disposed within the recoil chamber, between the opposing second surface of the damper piston and the end cap. The resilient member is thereby positioned to bias the damper piston into direct engagement with the shoulder. A rod is coupled to the primary piston. The damper piston defines a channel and an inner channel. The channel extends laterally between the inner cylindrical face and an outer periphery of the damper piston across the contact surface. The primary piston and the channel are configured to cooperatively define a flow conduit upon engagement between the primary piston and the damper piston. The flow conduit and the inner channel cooperate to define an open flow path from the recoil chamber.
The invention is capable of other embodiments and of being carried out in various ways. Alternative exemplary embodiments relate to other features and combinations of features as may be recited in the claims.
The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:
Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the present application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.
Referring to the exemplary embodiment shown in
According to an exemplary embodiment, the axle assembly 110 includes a suspension system 118 that couples the chassis of the vehicle to wheel end assembly 116. In some embodiments, the chassis includes a pair of opposing frame rails, and the suspension system 118 engages the opposing frame rails through side plate assemblies. In other embodiments, the chassis is a hull, a capsule, or another type of structural member. According to an exemplary embodiment, the suspension system 118 includes a spring, shown as gas spring 120, and a damper, shown as hydraulic damper 122. As shown in
According to an exemplary embodiment, the vehicle is configured for operation on both smooth (e.g., paved) and uneven (e.g., off-road, rough, etc.) terrain. As the vehicle travels over uneven terrain, the upper swing arm 124 and the lower swing arm 126 guide the vertical movement of the wheel end assembly 116. A stop, shown as cushion 128, provides an upper bound to the movement of the wheel end assembly 116. It should be understood that axle assembly 110 may include similar components (e.g., wheel end assemblies, suspension assemblies, swing arms, etc.) for each of the two opposing lateral sides of a vehicle.
Referring next to the exemplary embodiment shown in
According to the exemplary embodiment shown in
According to an exemplary embodiment, recoil damper 250 dissipates energy thereby reducing the total energy of damper 200. As the vehicle encounters a positive obstacle (e.g., a bump, a curb, etc.) or a negative obstacle (e.g., a depression, etc.), the shaft 210 moves relative to housing 230. Various factors including, among others, the speed of the vehicle, the weight of the vehicle, and the characteristics of the obstacle affect the energy imparted into the damper 200 by the obstacle. By way of example, shaft 210 translates toward first end 232 of housing 230 as a wheel of the vehicle encounters a negative obstacle. It should be understood that the moving shaft 210 possesses kinetic energy that contributes to the total energy of damper 200. Interaction of recoil damper 250 with plunger 240 dissipates energy thereby reducing the total energy of damper 200. Such dissipated energy does not increase the kinetic energy of shaft 210 or plunger 240, according to an exemplary embodiment.
Referring again to the exemplary embodiment shown in
According to an exemplary embodiment, recoil damper 250 includes a piston, shown as secondary plunger 252. As shown in
As shown in
According to an exemplary embodiment, recoil damper 250 includes a resilient member, shown as return spring 256. As shown in
According to an exemplary embodiment, secondary plunger 252 defines a channel (i.e. track, depression, kerf, notch, opening, recess, slit, etc.), shown as damping groove 253. As shown in
As shown in
According to an alternative embodiment, shaft 210 does not extend through secondary plunger 252. Such a damper 200 may include a shaft 210 that projects toward second end 234 of housing 230 from plunger 240. A limiter (e.g., a recoil damper) may be positioned between plunger 240 and end cap 236. The limiter may provide supplemental damping forces as plunger 240 approaches an end of stroke (e.g., full compression). According to an exemplary embodiment, plunger 240 and second plunger 252 are disk shaped. According to an alternative embodiment, plunger 240 and second plunger 252 have still another shape.
According to an exemplary embodiment, the various components of damper 200 (e.g., the sidewall of housing 230, plunger 240, secondary plunger 252, shaft 210, etc.) have a circular cross section. According to an alternative embodiment, the various components of damper 200 may include a different cross-sectional shape (e.g., rectangular, square, hexagonal, etc.). While shown in
According to the exemplary embodiment shown in
According to an alternative embodiment, plunger 240 defines a channel. The channel of plunger 240 may correspond to damping groove 253 of plunger 240 such that the channel of plunger 240 and damping groove 253 of secondary plunger 252 together form a flow conduit. In other embodiments, the channel of plunger 240 does not correspond to damping groove 253 of plunger 240 such that a plurality of flow conduits are formed between the damping groove 253 and the contact surface of plunger 240 and the channels of plunger 240 and the contact surface of secondary plunger 252. According to another alternative embodiment, secondary plunger 252 does not include damping groove 253, and a channel defined within plunger 240 and a contact surface of plunger 240 form the flow conduit.
As plunger 240 translates between the position shown in
According to an exemplary embodiment, the amount of energy dissipated and the supplemental damping forces provided by recoil damper 250 (e.g., due to fluid flow through the conduit) is related to the shape of damping groove 253. According to an exemplary embodiment, fluid flow does not occur between secondary plunger 252 and the sidewall of housing 230. Secondary plunger 252 and interfacing member 254 limit fluid flow between recoil chamber 272 and compression chamber 260 to a flow path through the conduit. Recoil damper 250 thereby generates a fluid flow path through the conduit, and interfacing member 254 facilitates determining the expected performance characteristics (e.g., the amount of energy dissipated, the supplemental damping forces provided, etc.) of recoil damper 250. Such performance characteristics may be tuned as a function only of the features of damping groove 253, according to an exemplary embodiment. Limiting fluid from flowing between secondary plunger 252 and an inner sidewall of housing 230 also provides more predictable and uniform energy dissipation and supplemental damping forces (i.e. additional flow paths may introduce additional variability into the energy dissipated by a limiter).
Referring next to
According to an exemplary embodiment, end cap 236 includes a contact end 237 and has a cylindrical shape that defines an inner volume. The opposing surface of secondary plunger 252 engages contact end 237 of end cap 236 to limit further movement of plunger 240 and shaft 210 along direction of travel 280. It should be understood that return spring 256 compresses as plunger 240 and secondary plunger 252 travel toward end cap 236. According to an exemplary embodiment, return spring 256 has an outer diameter that is smaller than contact end 237 of end cap 236 such that return spring 256 extends within the inner volume of end cap 236. Return spring 256 nests within the inner volume of cap 236 as plunger 240 and secondary plunger 252 translate toward end cap 236 along direction of travel 280.
According to an alternative embodiment, a vehicle suspension system includes an external hard stop that interfaces with another suspension component. By way of example, the suspension system may include a polymeric cushion coupled to a chassis of the vehicle that contacts a swing arm. Secondary plunger 252 in such a suspension system may not contact end cap 236 (i.e. the end of stroke for the installed damper 200 may occur before maximum extension). According to an alternative embodiment, the suspension system includes an external hard stop (e.g., a polymeric cushion) and also a secondary plunger 252 that engages end cap 236 to distribute the total stopping forces to various suspension components. According to still another alternative embodiment, damper 200 includes another type of internal hard stop (e.g., a snap ring positioned within and internal groove of housing 230, a stud protruding into the inner volume of housing 230, etc.). The internal hard stop may engage plunger 240, secondary plunger 252, or still another component of damper 200.
Referring next to
As shown in
According to an exemplary embodiment, return spring 256 includes a first end coupled to end cap 236 and a second end coupled to secondary plunger 252. As plunger 240 translates along direction of travel 282, return spring 256 extends from a contracted position (e.g., nested within end cap 236) to an extended position. According to an exemplary embodiment, the contact surface of secondary plunger 252 engages step 231 when return spring 256 is in the extended position. The extension of return spring 256 repositions secondary plunger 252 such that recoil damper 250 may again dissipate energy and provide a supplemental damping force (e.g., as the vehicle interacts with a subsequent positive or negative obstacle). As return spring 256 extends, fluid is drawn from extension chamber 270 into recoil chamber 272 such that fluid is again available to flow through the conduit, dissipate energy, and provide a supplemental damping force. According to an alternative embodiment, recoil damper 250 does not include return spring 256 and secondary plunger 252 travels downward toward step 231 due to another force (e.g., coupling forces between plunger 240 and secondary plunger 252, gravitation forces, etc.).
As shown in
Referring next to the exemplary embodiment shown in
As shown in
According to an exemplary embodiment, the primary damper 340 includes a first tubular member 342 positioned within a second tubular member 344. As shown in
As shown in
According to an exemplary embodiment, the tubular member 364 is positioned coaxially with the first tubular member 342 and the second tubular member 344. An end cap 366 is coupled to an end of housing 370, and the tubular member 364 is slidably coupled between the cap 352 and the end cap 366. According to an exemplary embodiment, plunger 362 has an annular shape that defines an aperture extending therethrough. The plunger 362 is disposed between an inner surface of the housing 370 and an outer surface of third tubular member 348. As shown in
Referring again to
Extension and retraction of the damper assembly 300 provides relative movement between a first set of components (e.g., plunger 346, first tubular member 342, second tubular member 344, tubular member 364, end cap 366, etc.) relative to a second set of components (e.g., housing 370, cap 350, third tubular member 348, cap 352, etc.). Such extension and retraction causes fluid to flow through the flow channel 382 and flow channel 386 in opposite directions (e.g., fluid flows into compression chamber 380 and out of extension chamber 384 as the damper assembly 300 is extended). According to an exemplary embodiment, the area of plunger 346 and the area of first tubular member 342 exposed to compression chamber 380 is approximately equal to the area of plunger 346 and the area of plunger 362 that are exposed to extension chamber 384 thereby providing a one-to-one working area ratio.
Extension and retraction of the damper assembly 300 also provides relative movement between plunger 362 and housing 370. According to an exemplary embodiment, plunger 362 is coupled to plunger 346 (e.g., with tubular member 364, manifold 310, and first tubular member 342). As damper assembly 300 is compressed, fluid is forced from secondary compression chamber 390, through a first set of openings 372 to a second set of openings 372 via a conduit, and into a secondary extension chamber 392. As damper assembly 300 is extended, fluid is forced from secondary extension chamber 392, through a first set of openings 372 to a second set of openings 372 via a conduit, and into secondary compression chamber 390. Fluid is forced through specific openings 372 based on the position of plunger 362 within housing 370. Certain sets of openings may be deactivated (e.g., due to hydraulic lock, because a set of the openings is obstructed by plunger 362, etc.). According to an exemplary embodiment, valves (e.g., bidirectional flow valves, etc.) may be positioned within the conduits that couple the openings 372. According to an exemplary embodiment, secondary damper 360 provides damping forces that vary based on the position of plunger 362 and the direction that plunger 362 is traveling.
Referring to the exemplary embodiment shown in
According to an exemplary embodiment, secondary plunger 510 defines a channel (i.e. track, depression, kerf, notch, opening, recess, slit, etc.), shown as damping groove 519. As shown in
As shown in
Plunger 362 translates toward end cap 366 along direction of travel 363 as damper assembly 300 is extended. As shown in
According to an exemplary embodiment, the conduit restricts fluid flow thereby dissipating energy and providing a damping force. As damper assembly 300 extends, plunger 362 and secondary plunger 510 translate along direction of travel 363 toward end cap 366. According to an exemplary embodiment, end cap 366 is a hard stop for damper assembly 300. As shown in
Referring next to the exemplary embodiment shown in
As shown in
Damping groove 630 is configured to interface with a contact surface of a plunger and form a conduit to dissipate energy and provide damping forces. As shown in
The construction and arrangements of the damper, as shown in the various exemplary embodiments, are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. Some elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process, logical algorithm, or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention.
This application is a continuation of U.S. application Ser. No. 17/676,572, filed Feb. 21, 2022 which is a continuation of U.S. application Ser. No. 16/838,391, filed Apr. 2, 2020, now U.S. Pat. No. 11,255,401, which is a continuation of U.S. application Ser. No. 16/041,229, filed Jul. 20, 2018, now U.S. Pat. No. 10,619,696, which is a continuation of U.S. application Ser. No. 15/084,375, filed Mar. 29, 2016, now U.S. Pat. No. 10,030,737 which is a continuation of U.S. Application Ser. No. 13/792,151, filed Mar. 10, 2013, now U.S. Pat. No. 9,303,715, all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2127518 | Huntman | Aug 1938 | A |
2214038 | Beecher | Sep 1940 | A |
2380393 | Berg | Jul 1945 | A |
2601297 | Keese | Jun 1952 | A |
2653681 | McIntyre | Sep 1953 | A |
2783859 | Patriquin | Mar 1957 | A |
2985319 | Simmons | May 1961 | A |
3000625 | Polhemus | Sep 1961 | A |
3165164 | Hostetler et al. | Jan 1965 | A |
3175645 | Schafer et al. | Mar 1965 | A |
3316571 | Cutrone | May 1967 | A |
3341189 | Rumsey | Sep 1967 | A |
3376957 | Baumgartner | Apr 1968 | A |
3439913 | Kamman | Apr 1969 | A |
3446317 | Gryglas | May 1969 | A |
3447644 | Duckett | Jun 1969 | A |
3565498 | Leopard et al. | Feb 1971 | A |
3667563 | Korb et al. | Jun 1972 | A |
3731770 | Bindon | May 1973 | A |
3739885 | Bainbridge | Jun 1973 | A |
3750856 | Kenworthy | Aug 1973 | A |
3882951 | Conley | May 1975 | A |
3944270 | Kreuzer | Mar 1976 | A |
3993294 | Wossner et al. | Nov 1976 | A |
4018270 | Kolinger et al. | Apr 1977 | A |
4071009 | Kraina | Jan 1978 | A |
4150819 | Taylor | Apr 1979 | A |
4155433 | Porter | May 1979 | A |
4284177 | Domek | Aug 1981 | A |
4315204 | Sievers et al. | Feb 1982 | A |
4382311 | Watts | May 1983 | A |
4383595 | Schnitzius | May 1983 | A |
4441379 | Malkowski et al. | Apr 1984 | A |
4537374 | Barnoin et al. | Aug 1985 | A |
4591031 | Kirst | May 1986 | A |
4621150 | Hirai et al. | Nov 1986 | A |
4796871 | Bauer et al. | Jan 1989 | A |
4811983 | Watts et al. | Mar 1989 | A |
4813736 | Schubert et al. | Mar 1989 | A |
4836568 | Preslik et al. | Jun 1989 | A |
4854807 | Bishop | Aug 1989 | A |
4899853 | Hummel | Feb 1990 | A |
4905569 | Seksaria et al. | Mar 1990 | A |
5005677 | Bucholtz et al. | Apr 1991 | A |
5007326 | Gooch et al. | Apr 1991 | A |
5013062 | Yonekawa et al. | May 1991 | A |
5016544 | Woollam | May 1991 | A |
5024301 | Cook | Jun 1991 | A |
5033357 | Seksaria et al. | Jul 1991 | A |
5040645 | Volpel et al. | Aug 1991 | A |
5046755 | Runkel et al. | Sep 1991 | A |
5102109 | Schnetz | Apr 1992 | A |
5113779 | Amrein et al. | May 1992 | A |
5171121 | Smith et al. | Dec 1992 | A |
5180039 | Axthammer et al. | Jan 1993 | A |
5193608 | Sekine et al. | Mar 1993 | A |
5234084 | Bell | Aug 1993 | A |
5383680 | Bock et al. | Jan 1995 | A |
5398592 | Turner | Mar 1995 | A |
5417299 | Pillar et al. | May 1995 | A |
5421238 | Catalano | Jun 1995 | A |
5498208 | Braun | Mar 1996 | A |
5501567 | Lanzdorf et al. | Mar 1996 | A |
5503258 | Clarke et al. | Apr 1996 | A |
5517894 | Bohne et al. | May 1996 | A |
5536036 | Ehrlich | Jul 1996 | A |
5587907 | Shibata et al. | Dec 1996 | A |
5597047 | Thompson et al. | Jan 1997 | A |
5607028 | Braun et al. | Mar 1997 | A |
5653425 | Page et al. | Aug 1997 | A |
5663520 | Ladika et al. | Sep 1997 | A |
5697741 | Harris et al. | Dec 1997 | A |
5732787 | Hirahara et al. | Mar 1998 | A |
5779300 | McNeilus et al. | Jul 1998 | A |
5792974 | Daqis et al. | Aug 1998 | A |
5820150 | Archer et al. | Oct 1998 | A |
5820258 | Braun | Oct 1998 | A |
5829946 | McNeilus et al. | Nov 1998 | A |
5845723 | Hirahara et al. | Dec 1998 | A |
5867092 | Vogt | Feb 1999 | A |
5931628 | Christenson | Aug 1999 | A |
6010139 | Heyring et al. | Jan 2000 | A |
6027158 | Yang | Feb 2000 | A |
6053486 | Schuitema et al. | Apr 2000 | A |
6086074 | Braun | Jul 2000 | A |
6120009 | Gatehouse et al. | Sep 2000 | A |
6129343 | Ecarnot | Oct 2000 | A |
6129368 | Ishikawa | Oct 2000 | A |
6194877 | Judge et al. | Feb 2001 | B1 |
6247564 | Kim | Jun 2001 | B1 |
6263749 | Wesley | Jul 2001 | B1 |
6266598 | Pillar et al. | Jul 2001 | B1 |
6286868 | Von Mayenburg | Sep 2001 | B1 |
6290450 | Humphries et al. | Sep 2001 | B1 |
6421593 | Kempen et al. | Jul 2002 | B1 |
6446944 | Ward | Sep 2002 | B1 |
6485079 | Brown et al. | Nov 2002 | B1 |
6499548 | Wesley | Dec 2002 | B2 |
6527495 | Humphries et al. | Mar 2003 | B2 |
6553290 | Pillar | Apr 2003 | B1 |
6622397 | Knoble | Sep 2003 | B1 |
6633006 | Wolf et al. | Oct 2003 | B1 |
6646845 | Turner et al. | Nov 2003 | B1 |
6648089 | Wooldridge et al. | Nov 2003 | B1 |
6666491 | Schrafel | Dec 2003 | B2 |
6688424 | Nakada et al. | Feb 2004 | B1 |
6692052 | Sutton et al. | Feb 2004 | B1 |
6698729 | Popjoy | Mar 2004 | B2 |
6757597 | Yakes et al. | Jun 2004 | B2 |
6778078 | Han et al. | Aug 2004 | B1 |
6882917 | Pillar et al. | Apr 2005 | B2 |
6885920 | Yakes et al. | Apr 2005 | B2 |
6909944 | Pillar et al. | Jun 2005 | B2 |
6918721 | Venton-Walters et al. | Jul 2005 | B2 |
6922615 | Pillar et al. | Jul 2005 | B2 |
6962102 | Johnston et al. | Nov 2005 | B1 |
6993421 | Pillar et al. | Jan 2006 | B2 |
6997506 | Hecker | Feb 2006 | B2 |
7006902 | Archer et al. | Feb 2006 | B2 |
7024296 | Squires et al. | Apr 2006 | B2 |
7055880 | Archer | Jun 2006 | B2 |
7072745 | Pillar et al. | Jul 2006 | B2 |
7073620 | Braun et al. | Jul 2006 | B2 |
7073847 | Morrow et al. | Jul 2006 | B2 |
7107129 | Rowe et al. | Sep 2006 | B2 |
7118314 | Zhou et al. | Oct 2006 | B2 |
7127331 | Pillar et al. | Oct 2006 | B2 |
7162332 | Pillar et al. | Jan 2007 | B2 |
7164977 | Yakes et al. | Jan 2007 | B2 |
7184862 | Pillar et al. | Feb 2007 | B2 |
7184866 | Squires et al. | Feb 2007 | B2 |
7198130 | Schimke | Apr 2007 | B2 |
7228948 | Wilda et al. | Jun 2007 | B2 |
7254468 | Pillar et al. | Aug 2007 | B2 |
7258194 | Braun et al. | Aug 2007 | B2 |
7264305 | Kuriakose | Sep 2007 | B2 |
7270222 | Aymar | Sep 2007 | B1 |
7270346 | Rowe et al. | Sep 2007 | B2 |
7274976 | Rowe et al. | Sep 2007 | B2 |
7277782 | Yakes et al. | Oct 2007 | B2 |
7302320 | Nasr et al. | Nov 2007 | B2 |
7322591 | Seki | Jan 2008 | B2 |
7325660 | Norgaard et al. | Feb 2008 | B2 |
7357203 | Morrow et al. | Apr 2008 | B2 |
7370904 | Wood et al. | May 2008 | B2 |
7392122 | Pillar et al. | Jun 2008 | B2 |
7448460 | Morrow et al. | Nov 2008 | B2 |
7451028 | Pillar et al. | Nov 2008 | B2 |
7517005 | Kuriakose | Apr 2009 | B2 |
7522979 | Pillar | Apr 2009 | B2 |
7555369 | Pillar et al. | Jun 2009 | B2 |
7621580 | Randjelovic et al. | Nov 2009 | B2 |
7689332 | Yakes et al. | Mar 2010 | B2 |
7703586 | Deferme | Apr 2010 | B2 |
7711460 | Yakes et al. | May 2010 | B2 |
7715962 | Rowe et al. | May 2010 | B2 |
7756621 | Pillar et al. | Jul 2010 | B2 |
7823948 | Redman et al. | Nov 2010 | B2 |
7824293 | Schimke | Nov 2010 | B2 |
7831363 | Quigley | Nov 2010 | B2 |
7896606 | Ethington et al. | Mar 2011 | B2 |
7931103 | Morrow et al. | Apr 2011 | B2 |
7949445 | Poilbout | May 2011 | B2 |
7954882 | Brummel et al. | Jun 2011 | B2 |
7963204 | Venton-Walters et al. | Jun 2011 | B2 |
7997182 | Cox | Aug 2011 | B1 |
8000850 | Nasr et al. | Aug 2011 | B2 |
8095247 | Pillar et al. | Jan 2012 | B2 |
8096225 | Johnson et al. | Jan 2012 | B1 |
8109557 | Salinas | Feb 2012 | B1 |
8123645 | Schimke | Feb 2012 | B2 |
8152216 | Howell et al. | Apr 2012 | B2 |
8196721 | Gabriel et al. | Jun 2012 | B2 |
8205729 | Miyasato et al. | Jun 2012 | B2 |
8215892 | Calliari | Jul 2012 | B2 |
8333390 | Linsmeier et al. | Dec 2012 | B2 |
8337352 | Morrow et al. | Dec 2012 | B2 |
8376439 | Kuriakose et al. | Feb 2013 | B2 |
8402878 | Schreiner et al. | Mar 2013 | B2 |
8413567 | Luther et al. | Apr 2013 | B2 |
8437982 | Minoshima et al. | May 2013 | B2 |
8459619 | Trinh et al. | Jun 2013 | B2 |
8465025 | Venton-Walters et al. | Jun 2013 | B2 |
8509452 | Yokota | Aug 2013 | B2 |
8541895 | Kuriki | Sep 2013 | B2 |
8561735 | Morrow et al. | Oct 2013 | B2 |
8596648 | Venton-Walters et al. | Dec 2013 | B2 |
8640594 | Treadway et al. | Feb 2014 | B2 |
8656822 | Saucedo | Feb 2014 | B1 |
8657498 | Cooley et al. | Feb 2014 | B2 |
8667880 | Berman | Mar 2014 | B1 |
8695998 | Karel et al. | Apr 2014 | B1 |
8723948 | Gotz et al. | May 2014 | B2 |
8740286 | Aizik et al. | Jun 2014 | B2 |
8764029 | Venton-Walters et al. | Jul 2014 | B2 |
8770086 | Enck | Jul 2014 | B2 |
8794886 | Nett et al. | Aug 2014 | B1 |
8801017 | Ellifson et al. | Aug 2014 | B2 |
8801318 | Knoble et al. | Aug 2014 | B2 |
8807576 | Koeske et al. | Aug 2014 | B2 |
8813981 | Ethington | Aug 2014 | B2 |
8821130 | Venton-Walters et al. | Sep 2014 | B2 |
8864613 | Morrow et al. | Oct 2014 | B2 |
8876133 | Ellifson | Nov 2014 | B2 |
8886402 | Lou | Nov 2014 | B1 |
8943946 | Richmond et al. | Feb 2015 | B1 |
8947531 | Fischer et al. | Feb 2015 | B2 |
8955859 | Richmond et al. | Feb 2015 | B1 |
8967699 | Richmond et al. | Mar 2015 | B1 |
8991834 | Venton-Walters et al. | Mar 2015 | B2 |
8991840 | Zuleger et al. | Mar 2015 | B2 |
8998299 | Shmargad | Apr 2015 | B2 |
9022185 | Kanioz | May 2015 | B2 |
9033165 | Aus et al. | May 2015 | B2 |
9045014 | Verhoff et al. | Jun 2015 | B1 |
9062983 | Zych | Jun 2015 | B2 |
9114804 | Shukla et al. | Aug 2015 | B1 |
9114808 | Ogata et al. | Aug 2015 | B2 |
9127738 | Ellifson et al. | Sep 2015 | B2 |
9132736 | Oshkosh | Sep 2015 | B1 |
9139409 | Perron | Sep 2015 | B2 |
9145905 | Hou | Sep 2015 | B2 |
9157704 | Bayer et al. | Oct 2015 | B2 |
9174686 | Oshkosh | Nov 2015 | B1 |
9194136 | Cormier et al. | Nov 2015 | B2 |
9279258 | Cormier et al. | Mar 2016 | B2 |
9291230 | Ellifson et al. | Mar 2016 | B2 |
9293135 | Rill et al. | Mar 2016 | B2 |
9297426 | Graves et al. | Mar 2016 | B2 |
9303715 | Oshkosh | Apr 2016 | B2 |
9305541 | Caillet et al. | Apr 2016 | B2 |
9306432 | Coldwate et al. | Apr 2016 | B2 |
9327576 | Ellifson | May 2016 | B2 |
9328986 | Pennau et al. | May 2016 | B1 |
9329000 | Richmond et al. | May 2016 | B1 |
9330653 | Yokota | May 2016 | B2 |
9366507 | Richmond et al. | Jun 2016 | B1 |
9376102 | Shukla et al. | Jun 2016 | B1 |
9404717 | Pfennig et al. | Aug 2016 | B2 |
9428042 | Morrow et al. | Aug 2016 | B2 |
9452750 | Shukla et al. | Sep 2016 | B2 |
9454952 | Tzirkel-Hancock et al. | Sep 2016 | B2 |
9493093 | Stingle et al. | Nov 2016 | B2 |
9508335 | Benattar et al. | Nov 2016 | B2 |
9508336 | Torres | Nov 2016 | B1 |
9581153 | Venton-Walters et al. | Feb 2017 | B2 |
9595251 | Whinnery | Mar 2017 | B2 |
9633507 | Wolf et al. | Apr 2017 | B2 |
9641120 | Matsuda et al. | May 2017 | B2 |
9650032 | Kotloski et al. | May 2017 | B2 |
9651120 | Morrow et al. | May 2017 | B2 |
9656640 | Verhoff et al. | May 2017 | B1 |
9656659 | Shukla et al. | May 2017 | B2 |
9669679 | Zuleger et al. | Jun 2017 | B2 |
9688112 | Venton-Walters et al. | Jun 2017 | B2 |
9704507 | Westerman | Jul 2017 | B2 |
9707869 | Messina et al. | Jul 2017 | B1 |
9731594 | Wildgrube | Aug 2017 | B2 |
9738186 | Krueger et al. | Aug 2017 | B2 |
9743213 | Mohammad et al. | Aug 2017 | B2 |
9747367 | Benattar | Aug 2017 | B2 |
9764613 | Rowe et al. | Sep 2017 | B2 |
9765841 | Ellifson et al. | Sep 2017 | B2 |
9809080 | Ellifson et al. | Nov 2017 | B2 |
9821789 | Shukla et al. | Nov 2017 | B2 |
9829282 | Richmond et al. | Nov 2017 | B1 |
9845839 | Rummel | Dec 2017 | B2 |
9890024 | Hao et al. | Feb 2018 | B2 |
9904851 | Dimitriadis et al. | Feb 2018 | B2 |
9908520 | Shukla et al. | Mar 2018 | B2 |
9938121 | Aus et al. | Apr 2018 | B2 |
9944145 | Dillman et al. | Apr 2018 | B2 |
9970515 | Morrow et al. | May 2018 | B2 |
9987900 | Farjoud et al. | Jun 2018 | B2 |
9989333 | Sumi et al. | Jun 2018 | B2 |
10029555 | Kotloski et al. | Jul 2018 | B2 |
10029556 | Morrow et al. | Jul 2018 | B2 |
10030737 | Dillman et al. | Jul 2018 | B2 |
10063972 | Zanpure | Aug 2018 | B1 |
10111000 | Ho et al. | Oct 2018 | B1 |
10152962 | MacNeille et al. | Dec 2018 | B2 |
10157606 | Christoph | Dec 2018 | B2 |
10199030 | Torres et al. | Feb 2019 | B2 |
10214876 | Nakagawa et al. | Feb 2019 | B2 |
10350956 | Dillman et al. | Jul 2019 | B2 |
10403258 | Zaferopoulos | Sep 2019 | B2 |
10414266 | Wiegand et al. | Sep 2019 | B1 |
10419868 | Hotary | Sep 2019 | B2 |
10547947 | Kim et al. | Jan 2020 | B2 |
10556622 | Calliari et al. | Feb 2020 | B1 |
10611203 | Rositch et al. | Apr 2020 | B1 |
10611204 | Zhang et al. | Apr 2020 | B1 |
10611416 | Groteleuschen et al. | Apr 2020 | B1 |
10619696 | Dillman et al. | Apr 2020 | B2 |
10632805 | Rositch et al. | Apr 2020 | B1 |
10752075 | Shukla et al. | Aug 2020 | B1 |
10882373 | Shukla et al. | Jan 2021 | B1 |
10974561 | Dillman et al. | Apr 2021 | B2 |
11046142 | Zhang et al. | Jun 2021 | B2 |
11199239 | Dumitru et al. | Dec 2021 | B2 |
11255401 | Dillman et al. | Feb 2022 | B2 |
11255642 | Rasico et al. | Feb 2022 | B1 |
11649874 | Dillman | May 2023 | B2 |
20010011614 | Sasano et al. | Aug 2001 | A1 |
20010012369 | Marquiss | Aug 2001 | A1 |
20010025889 | Salberg | Oct 2001 | A1 |
20020015614 | Lindsay | Feb 2002 | A1 |
20020020572 | Wooldridge et al. | Feb 2002 | A1 |
20020100649 | Agrotis et al. | Aug 2002 | A1 |
20030067152 | Most et al. | Apr 2003 | A1 |
20030159575 | Reichman | Aug 2003 | A1 |
20040004316 | Robertson | Jan 2004 | A1 |
20040020354 | Ravid et al. | Feb 2004 | A1 |
20040062620 | Deets | Apr 2004 | A1 |
20040148778 | Fleming | Aug 2004 | A1 |
20050051935 | Lanterman et al. | Mar 2005 | A1 |
20050087064 | Cohen | Apr 2005 | A1 |
20050200201 | Jabaji et al. | Sep 2005 | A1 |
20050252635 | Adamson et al. | Nov 2005 | A1 |
20050274491 | Evans et al. | Dec 2005 | A1 |
20050284682 | Hass et al. | Dec 2005 | A1 |
20050285445 | Wruck et al. | Dec 2005 | A1 |
20060076741 | Lim | Apr 2006 | A1 |
20060163016 | Ferkany | Jul 2006 | A1 |
20060163017 | Verriet | Jul 2006 | A1 |
20060185950 | Gaile | Aug 2006 | A1 |
20060192354 | Van Cayzeele | Aug 2006 | A1 |
20060288969 | Thomas | Dec 2006 | A1 |
20070023253 | Wayman | Feb 2007 | A1 |
20070068716 | Kunikata | Mar 2007 | A1 |
20070084337 | Strassgurtl et al. | Apr 2007 | A1 |
20070144713 | Sugimoto et al. | Jun 2007 | A1 |
20070216147 | Ramsey | Sep 2007 | A1 |
20070234895 | Singh et al. | Oct 2007 | A1 |
20080084182 | Oberlin et al. | Apr 2008 | A1 |
20080093818 | Nykanen et al. | Apr 2008 | A1 |
20080195277 | Stiller | Aug 2008 | A1 |
20090001675 | Higashi | Jan 2009 | A1 |
20090007626 | Bochen et al. | Jan 2009 | A1 |
20090007856 | Minekawa | Jan 2009 | A1 |
20090020081 | Claypole et al. | Jan 2009 | A1 |
20090085377 | Hayes et al. | Apr 2009 | A1 |
20090151483 | Kim et al. | Jun 2009 | A1 |
20090267354 | Donaldson et al. | Oct 2009 | A1 |
20090309278 | Axelsson et al. | Dec 2009 | A1 |
20100006043 | Kardos et al. | Jan 2010 | A1 |
20100018732 | Daniel et al. | Jan 2010 | A1 |
20100037761 | Boczek et al. | Feb 2010 | A1 |
20100077913 | Cunningham et al. | Apr 2010 | A1 |
20100101404 | Lorenzo et al. | Apr 2010 | A1 |
20100121590 | Kato | May 2010 | A1 |
20100140031 | Miyasato | Jun 2010 | A1 |
20100170389 | North | Jul 2010 | A1 |
20100171323 | Helms | Jul 2010 | A1 |
20100218667 | Naroditsky et al. | Sep 2010 | A1 |
20100236882 | Uchiyama | Sep 2010 | A1 |
20100251883 | Naroditsky | Oct 2010 | A1 |
20100251884 | Floch | Oct 2010 | A1 |
20100307329 | Kaswen et al. | Dec 2010 | A1 |
20110017054 | Naroditsky et al. | Jan 2011 | A1 |
20110017536 | Chunduru et al. | Jan 2011 | A1 |
20110073402 | Manabe et al. | Mar 2011 | A1 |
20110100775 | Foister et al. | May 2011 | A1 |
20110114286 | Komatsu et al. | May 2011 | A1 |
20110139525 | Karl | Jun 2011 | A1 |
20110144868 | Tezak et al. | Jun 2011 | A1 |
20110192275 | Medwell et al. | Aug 2011 | A1 |
20110204675 | Sonnek et al. | Aug 2011 | A1 |
20110240387 | Piggott | Oct 2011 | A1 |
20110252954 | Peryea et al. | Oct 2011 | A1 |
20110315494 | Marking | Dec 2011 | A1 |
20120005962 | Ackermann | Jan 2012 | A1 |
20120048665 | Marking | Mar 2012 | A1 |
20120049470 | Rositch et al. | Mar 2012 | A1 |
20120070020 | Kano | Mar 2012 | A1 |
20120097019 | Sherbeck et al. | Apr 2012 | A1 |
20120098172 | Trinh et al. | Apr 2012 | A1 |
20120100790 | Miesterfeld et al. | Apr 2012 | A1 |
20120160620 | Yamashita et al. | Jun 2012 | A1 |
20120160624 | Katayama et al. | Jun 2012 | A1 |
20120174767 | Naroditsky et al. | Jul 2012 | A1 |
20120186428 | Peer et al. | Jul 2012 | A1 |
20120200116 | Klein et al. | Aug 2012 | A1 |
20120205843 | Allen et al. | Aug 2012 | A1 |
20120234638 | Ellifson et al. | Sep 2012 | A1 |
20120241128 | Vacca et al. | Sep 2012 | A1 |
20120247890 | Murakami | Oct 2012 | A1 |
20120312648 | Yu et al. | Dec 2012 | A1 |
20120318623 | Mombour | Dec 2012 | A1 |
20130241237 | Dziuba et al. | Sep 2013 | A1 |
20130249183 | Ellifson et al. | Sep 2013 | A1 |
20130327582 | Kim | Dec 2013 | A1 |
20140023456 | Allor et al. | Jan 2014 | A1 |
20140056675 | Kitaoka et al. | Feb 2014 | A1 |
20140060303 | Enck | Mar 2014 | A1 |
20140060304 | Harmon et al. | Mar 2014 | A1 |
20140060953 | Wetterlund | Mar 2014 | A1 |
20140130656 | Farinella et al. | May 2014 | A1 |
20140130658 | Gonzalez | May 2014 | A1 |
20140150633 | Mears et al. | Jun 2014 | A1 |
20140195062 | Stanczak et al. | Jul 2014 | A1 |
20140195115 | Muller et al. | Jul 2014 | A1 |
20140208931 | Shmargad | Jul 2014 | A1 |
20140233748 | Klug et al. | Aug 2014 | A1 |
20140251742 | Dillman et al. | Sep 2014 | A1 |
20140271066 | Hou | Sep 2014 | A1 |
20140316637 | Rhode et al. | Oct 2014 | A1 |
20140318359 | Asaf et al. | Oct 2014 | A1 |
20140326555 | Ellifson et al. | Nov 2014 | A1 |
20140334956 | Venton-Walters et al. | Nov 2014 | A1 |
20140343831 | Hosey et al. | Nov 2014 | A1 |
20140361566 | Oh et al. | Dec 2014 | A1 |
20150008658 | Keatley | Jan 2015 | A1 |
20150028529 | Ellifson | Jan 2015 | A1 |
20150145188 | Polakowski et al. | May 2015 | A1 |
20150189433 | Ganeshkumar | Jul 2015 | A1 |
20150191069 | Zuleger et al. | Jul 2015 | A1 |
20150197129 | Venton-Walters et al. | Jul 2015 | A1 |
20150249886 | Haylett et al. | Sep 2015 | A1 |
20150251610 | Kugelstadt et al. | Sep 2015 | A1 |
20150258872 | Lee | Sep 2015 | A1 |
20150268009 | Tunis et al. | Sep 2015 | A1 |
20150290993 | Dillman et al. | Oct 2015 | A1 |
20150300784 | Scarinci et al. | Oct 2015 | A1 |
20150316039 | Tucker et al. | Nov 2015 | A1 |
20150352944 | Hoffmann et al. | Dec 2015 | A1 |
20150367898 | Kondo | Dec 2015 | A1 |
20150369114 | Bruss et al. | Dec 2015 | A1 |
20150375592 | Lannen et al. | Dec 2015 | A1 |
20160017650 | Marshall et al. | Jan 2016 | A1 |
20160029111 | Wacquant et al. | Jan 2016 | A1 |
20160100250 | Baskin et al. | Apr 2016 | A1 |
20160121947 | Lyle et al. | May 2016 | A1 |
20160122973 | Lyle et al. | May 2016 | A1 |
20160138243 | Ogura et al. | May 2016 | A1 |
20160159401 | Batt | Jun 2016 | A1 |
20160162254 | Benattar | Jun 2016 | A1 |
20160163303 | Benattar et al. | Jun 2016 | A1 |
20160176283 | Hicke et al. | Jun 2016 | A1 |
20160305531 | Martin et al. | Oct 2016 | A1 |
20160329040 | Whinnery | Nov 2016 | A1 |
20170001672 | Bodin | Jan 2017 | A1 |
20170008361 | Langhorst et al. | Jan 2017 | A1 |
20170009840 | Hertz | Jan 2017 | A1 |
20170021721 | Kurokawa | Jan 2017 | A1 |
20170110107 | Iida | Apr 2017 | A1 |
20170125784 | Dulle et al. | May 2017 | A1 |
20170201197 | Res | Jul 2017 | A1 |
20170218832 | Kurokawa et al. | Aug 2017 | A1 |
20170225535 | Batsch et al. | Aug 2017 | A1 |
20170241502 | Rummel | Aug 2017 | A1 |
20170253221 | Verhoff et al. | Sep 2017 | A1 |
20170305226 | Okimura | Oct 2017 | A1 |
20170321995 | Sumi et al. | Nov 2017 | A1 |
20170349048 | Nakayama et al. | Dec 2017 | A1 |
20180003101 | Kondou et al. | Jan 2018 | A1 |
20180003807 | Galera et al. | Jan 2018 | A1 |
20180038074 | Nishihata | Feb 2018 | A1 |
20180052037 | Minoshima | Feb 2018 | A1 |
20180052038 | Minoshima | Feb 2018 | A1 |
20180126823 | Schoneboom | May 2018 | A1 |
20180141402 | Oh | May 2018 | A1 |
20180147915 | Tezuka et al. | May 2018 | A1 |
20180154728 | Giovanardi et al. | Jun 2018 | A1 |
20180162401 | Yamazaki | Jun 2018 | A1 |
20180182583 | Kato | Jun 2018 | A1 |
20180312039 | Sakane et al. | Nov 2018 | A1 |
20190016357 | Smith et al. | Jan 2019 | A1 |
20190036321 | Hu et al. | Jan 2019 | A1 |
20190092165 | Martin | Mar 2019 | A1 |
20190178329 | Dumitru et al. | Jun 2019 | A1 |
20190255903 | Hirao et al. | Aug 2019 | A1 |
20190276042 | Higashitani et al. | Sep 2019 | A1 |
20190300076 | Tilp et al. | Oct 2019 | A1 |
20190316650 | Dillman et al. | Oct 2019 | A1 |
20190349683 | Anders et al. | Nov 2019 | A1 |
20200232533 | Dillman et al. | Jul 2020 | A1 |
20200348109 | Trott | Nov 2020 | A1 |
20220258556 | Rositch et al. | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
2273950 | Jun 1998 | CA |
3056935 | Nov 2018 | CA |
206125159 | Apr 2017 | CN |
206953913 | Feb 2018 | CN |
39 34 385 | Apr 1991 | DE |
40 03 200 | Aug 1991 | DE |
10 2011 112 387 | Mar 2013 | DE |
20 2016 100 149 | Apr 2016 | DE |
10 2016 001 235 | Feb 2017 | DE |
10 2008 039 949 | Mar 2020 | DE |
0 133 157 | Feb 1985 | EP |
1 158 202 | Nov 2001 | EP |
1 640 251 | Mar 2006 | EP |
2 650 151 | Oct 2013 | EP |
2 706 367 | Mar 2014 | EP |
2340482 | Sep 1977 | FR |
2503055 | Oct 1982 | FR |
2687123 | Aug 1992 | FR |
3031721 | Jul 2016 | FR |
0 899 480 | Jun 1962 | GB |
63-167137 | Jul 1988 | JP |
H08-328570 | Dec 1996 | JP |
2000-108633 | Apr 2000 | JP |
2000-142054 | May 2000 | JP |
WO-2006010207 | Feb 2006 | WO |
WO-2007031821 | Mar 2007 | WO |
WO-2020214031 | Oct 2020 | WO |
Entry |
---|
Bucholz, Kami, Thermoplastic technology offers impact protection across automotive, sports, and defense,4 pgs, Mar. 24, 2015 SAE International, www.sae.org/news/2015/03/thermoplastic- technology-offers-impact-protection-across-automotive-sports-and-defense. |
Viconic Defense website, Oct. 18, 2014 http://www.viconicdefense.com/products/blast- mitigating-floor-mats. |
Viconic Launches New Military Blast Mat, 2 pgs., Dec. 18, 2013, http://www.viconicdefense.com/news. |
Zhang; Fault Diagnosis of Automotive Electric Power Generation and Storage Systems; Sep. 2010; https://eeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5611179 (Year: 2010). |
Ebert, Utility Vehicle With Aggregate Frame On A Sub-frame, Nov. 14, 2007, EPO, EP 1640251 B1, Machine Translation of Description (Year: 2007) (Year: 2007). |
Just, Cross Beam I.e. Front Cross Beam, For Use In Supporting Device Of E.g. Lorry . . . , Mar. 11, 2010, EPO, DE 102008039949 A1, Machine Translation of Description (Year: 2010). |
Number | Date | Country | |
---|---|---|---|
Parent | 17676572 | Feb 2022 | US |
Child | 18131209 | US | |
Parent | 16838391 | Apr 2020 | US |
Child | 17676572 | US | |
Parent | 16041229 | Jul 2018 | US |
Child | 16838391 | US | |
Parent | 15084375 | Mar 2016 | US |
Child | 16041229 | US | |
Parent | 13792151 | Mar 2013 | US |
Child | 15084375 | US |