The present invention relates to the field of encoding data for serial transmission in a transmission means, and is particularly applicable, but not limited, to the field of the optical communication systems.
Optical communications systems are a substantial and fast-growing constituent of communication networks. The expression “optical communication system”, as used herein, relates to any system which uses optical signals to convey information. Such optical systems include, but are not limited to, telecommunications systems, cable television systems, and local area networks (LANs). Optical communication systems are configured to carry information in modulated beams of light carried over optical fibres. However, the optical fibres in use today have characteristics that limit the speed and distance of data transmission.
A dispersive fibre broadens an input pulse causing intersymbol interference at the receiver and limiting, for a prefixed data rate, the maximum connection distance. As this effect is due to the non-linear shape of the fibre phase response around the optical carrier frequency, a signal with a narrower bandwidth should suffer less from chromatic dispersion. A way to reduce the signal bandwidth is line coding, and one proposed candidate is the duobinary code.
Duobinary is a widely used code scheme in which a “0” (“zero”) bit is represented by a zero-level electric current or voltage and a “1” (“one”) bit is represented by a positive-level current or voltage if the quantity of “0” bits since the last “1” bit is even, and by a negative-level current or voltage if the quantity of “0” bits since the last “1” bit is odd. This logic can be reversed, exchanging the words “bits 0” and “bits 1” in the above discussion. Recently other line coding schemes, called Phrased Amplitude-Shift Siginalling (PASS) codes and based on a modification of the duobinary one, have been proposed by Stark et al. in “Line coding for dispersion tolerance and spectral efficiency: duobinary and beyond” Proc. OFC'99, 1999, vol. WM46-1, pp. 331-333.
An alternative coding scheme referred to as Phase-Shaped Binary Transmission (PSBT) has been described by Penninckx et al. in “The phase-shaped binary transmission (PSBT): a new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett., vol. 9, no. 2, pp. 259-261, February 1997.
The performance of such coding techniques may be accurately evaluated and compared via an analytical method recently proposed by one of the present inventors in E. Forestieri, “Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre- and post-detection filtering”, submitted to J. Lightwave Technol., vol. 18, n. 11, November 2000.
There is a need for a new line code that provides better performance than existing ones. The general purpose of the present invention is to obviate the above mentioned shortcomings by making available a line coding scheme, a method and an apparatus which would permit better performances then the prior art.
In view of this purpose it was sought to provide in accordance with the present invention a coding scheme of order n for digital communications for obtaining a coded signal x(t) which represents binary data which are constituted by sequences of information bits {uk} with rate T, the scheme having N=2′ states, named Σi, i=1, 2, . . . , N, and comprising predetermined elementary signals si(t) which are combined in the signal x(t), characterized in that if at the time t=kT the coding is in a state Σm of the N states, the arrival of the information bit uk of the sequence {u} forces a transition to the state Σq of the N states and the selection of the elementary signal si(t) as x(t), where q and i are given by the following equations:
d1=m−1 mod2
d0=d1+uk mod2
r=2(m−1)+d0
q=(r mod N)+1
In accordance with an another aspect of the present invention, it was sought to provide the coding scheme in which the elementary signal si(t), i=±1, ±2, . . . , ±N, are such that s−i(t)=−si(t) and, for i≧1, in that:
where
and g(t) is a pulse of time length D=(n+1)T centered in the origin such that g(t)=g(−t) and having constant values over time intervals of length T/2.
Also, in accordance with the present invention, it was sought to provide a transmission method for coded digital communications, characterized in that the digital date are coded by the above mentioned coding scheme, and the coded signal is transmitted in a transmission means.
In accordance with the present invention, also it was sought to provide an apparatus for coded digital communications, characterized in that it comprises a coder for coding the digital date according to the coding scheme claimed.
To clarify the explanation of the innovative principles of the present invention and its advantages compared with the prior art there are described below with the aid of the annexed drawings possible embodiments thereof by way of non-limiting example applying said principles. In the drawing:
With reference to the figures,
As illustrated, the new line code uses four waveforms or elementary signals si(t), as shown in
The information sequence{uk} with rate T is encoded as shown in
where σk denotes the generic encoder state and g1 (σk) is a coefficient which is defined by the following rule:
where Σ1 and Σ2 indicate the states allowed to the encoder, and se(t;uk) is one of the two elementary signals s1(t) or s2(t) selected in accordance with the following rule:
Hence the elementary signal output from the encoder will be one of s1(t) or s2(t) or their negative (i.e. s4(t) or s3(t) respectively) depending on the value of g1(σk), as shown in
The sequence of states of the encoder is defined in the invention by the following rule:
σk+1=g2(uk,σk) (4)
where the value of the function g2 to be used in the embodiment is described by the following map:
An example of a waveform xe(t) generated by the novel line code (with α=0.5) is shown in
The power spectral density of the signal xe (t) in (1) coded according to the state diagram of
where S1(f) and S2(f) are the Fourier transforms of the elementary signals s1(t) and s2(t), respectively.
The state diagram in
and the power spectral density in (5) holds as long as S3(t)=−S2 (t) and S4(t)=−S1 (t).
The choice of different elementary signal sets for si(t), i=1, 2, 3, 4 does not significantly affect the performance as long as a post-coder filter is adopted. For this reason we limit ourselves here to the set of elementary signals shown in
A better understanding of the structure and characteristics of the order-1 code can be gained by expressing the form of the four elementary signals in
In this case we get for the elementary signals si(t), i=1, 2, 3, 4 the following expressions:
s1(t)=p(t)+p(t−T/2)
s2(t)=α[p(t)−p(t−T/2)]
s3(t)=−s2(t)
s4(t)=−s1(t) (6b)
which will lead to an useful generalization in the case of the order-n code, as described below. When using (6a) we may also write Ge(f) in terms of P(f), the Fourier transform of p(t), as follows
The power spectrum is shown in
As described above with reference to
In order to introduce the new order-n codes, we notice that, although the order-1 code is fully described by its diagram in
where (see
and
wk=bk−0.5 (10)
where the precoded symbols bk are obtained from the information symbols uk by
bk=uk+bk−1mod2 (11)
The encoder acts as if “large” output signals g(t) weighted by the coefficients wk were generated every T seconds, therefore overlapping each other to introduce a controlled amount of intersymbol interference. This interpretation is very useful because it allows to recognize that when the PAM pulse g(t) in (9a) is filtered by a Gaussian filter of bandwidth equal to ½T, the filter output fits very well a “prolate spheroidal wave function”, which, for a given time spread, has the most concentrated spectrum in frequency. This means that the filtered xe(t) has a power spectral density the most concentrated in frequency and therefore is more robust to the chromatic dispersion. Indeed, it can be shown that a sufficiently dispersive fiber turns an input pulse sin(t) with Fourier transform Sin(f) and bandwidth Bin, into the output pulse envelope approximately given by
where γ is the chromatic dispersion index of the fibre, defined as
where c is the light speed, λ is the optical wavelength corresponding to the optical carrier frequency, D is the fibre chromatic dispersion parameter at λ (usually provided in ps/nm/km), Rb is the bit rate and L is the fibre length. The above formula (12) turns out to be an exact relation instead that an approximation when the input pulse is properly chirped. So, the most concentrated in frequency the pulse, the less the effect of the intersymbol interference due to the chromatic dispersion in the output signal.
The signal y(t), corresponding to (1) or (8), at the output of the post-detection lowpass filter is of binary type and an example eye diagram corresponding to a 32-bit pattern with Rb=10 Gb/s, dispersive fibre of length L≈10 km and chromatic dispersion D=17 ps/nm/km at λ=1550 nm.
A corresponding eye diagram for duobinary/PSBT is shown in
having the same energy of sin(t), would correspond the same output pulse corresponding to sin(t) at γ, we conclude that when the dispersion doubles we can still avoid intersymbol interference by using an equivalent PAM pulse of double duration (in this case, however, chirping may be required). The signal xe (t) corresponding to an equivalent PAM pulse of length (n+1)T may be obtained by a coder of order n, as described below.
We now describe the general rule, embodiment of the coder of order n according to the present invention. As above disclose, a coder is described by its states, the transitions between states and the elementary signals correspondingly generated.
The order-n coder has N=2n states, denoted by Σi, i=1, 2, . . . , N, and the transitions and signal generations are specified by the following rule. If at the time t=kT the coder is in the state Σm, the arrival of the information bit uk forces a transition to the state Σq and the transmission of the elementary signal si(t), where q and i are given by the following equations:
The elementary signals si(t), i=±1, ±2, . . . , ±N are such to form couples in which s−i(t)=−si(t) and for i≧1
where
and now g(t) is a pulse of time length D=(n+1)T centered in the origin such that g(t)=g(−t) and assuming piecewise constant values (chosen to produce the best spectral configuration) over time intervals of length T/2. To obtain the k-th information symbol the post-detection lowpass filter output signal y(t) is to be sampled at the time
It is obvious that the division in (13c) is a integer division.
Depending on the n-order used, the elementary signals si(t) obtained by the (13b) have characteristic independent from their particular shape. For example, in the above mentioned case of order-1, the signals named s2(t) and s3(t) in
Any couple of the elementary signals si(t) has level different than level of the other couples of the elementary signals si(t).
As another example of embodiment, a state diagram (
Another example state diagram for a 8-state coder (order n=3) is shown in
In order to evaluate the performance of the line-coded pre-amplified direct-detection system shown in
For highly dispersive fibres (γ>0.35), the most effective transmitter lowpass filter LPF in
At this point, it is clear that the objectives of the present invention have been achieved by making a coding scheme having better performance than prior art schemes by means of a innovative state diagram and a particular selection of elementary signals.
Naturally the above description of embodiments applying the innovative principles of the present invention is given by way of non-limiting example of said principles within the scope of the exclusive right claimed here. For example it is clear for an expert in the art that the “bit 0” and “bit 1” indications used here can be exchanged to each other and the indexes used in the elementary waveform notation can be changed (for example, in
Number | Date | Country | Kind |
---|---|---|---|
MI2000A2727 | Dec 2000 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB01/02795 | 12/14/2001 | WO | 00 | 11/7/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/49299 | 6/20/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5920416 | Beylat et al. | Jul 1999 | A |
6424444 | Kahn et al. | Jul 2002 | B1 |
6592274 | Kahn et al. | Jul 2003 | B2 |
Number | Date | Country |
---|---|---|
0 543 070 | May 1993 | EP |
Number | Date | Country | |
---|---|---|---|
20040066856 A1 | Apr 2004 | US |