This application is 371 of PCT/EP02/0602, filed on Jun. 11, 2002.
The present invention relates to a line driver for data transmission, in particular a line driver for wirebound data transmission at high bit rates.
A conventional line driver known from the prior art for wirebound data transmission is represented by way of example in
As is shown in
The differential pairs 3 are variously deflected or actuated as a function of the data of the line driver which is to be transmitted, i.e. as a function of the output signal which is to be transmitted, and drive a current onto the common cascade transistors 6, 7. The deflection or actuation of each differential pair 3 is effected by connecting the gate connections of the differential pair transistors 4, 5, to two different reference voltages Vref1 and Vref2 as a function of a digital word imposed, i.e. to be transmitted. To this purpose, the differential pair transistors 4, 5, are imposed by means of controllable switches 26–29, as a function of complementary control signals DW or DW respectively, optionally to the reference voltage Vref1 and Vref2 in such a way that the differential pair transistors 4, 5, are actuated in a differentially symmetrical manner, i.e. the gate connection of the differential pair transistor 4 is located, for example, at the reference voltage Vref1, while at the same time the gate connection of the differential pair transistor 5 is imposed at the reference voltage Vref1 and vice-versa. The reference voltages Vref1 and Vref2 are, as shown in
As can be seen from
One problem with the circuit arrangement shown in
In this situation, CG represents the gate capacitance of the differential pair transistors 4, 5, and gmrof1 or gmrof2 represent the gradient of the differential pair transistors 4, 5, as a function of the reference voltage Vref1 or Vref2 respectively. As a result of the different time constants for a rising edge and a falling edge of the actuation signal, the differential pair transistors 4, 5, are deflected at different speeds. Accordingly, unsymmetrical edges occur at the load outputs of the line driver, as well as an AC voltage or AC signal at the foot point of the individual differential pair 3 in each case, as a result of which instances of non-linearity are incurred. This DC voltage couples via the parasitical capacitances of the current mirror circuit or cascade transistors 6, 7 onto the bias voltage provided by the voltage sources 8, 9, and therefore changes briefly the voltage provided, whereby this effect is dependent on the number of simultaneously switched differential pairs 3, and is therefore also dependent on the particular output signal of the line driver which is being sent.
The cascade transistors 6, 7, reduce the signal level swing at the drain connections of the differential pair transistors 4, 5, which as a rule are very large, and determines the load impedance for the situation in which the impedance value RL of the resistors 12, 13, is less than 1/gos, i.e. less than the reciprocal output guideline value of the cascade transistors 6, 7, this load impedance being seen from the individual differential pair 3 in each case, or which takes effect on the individual differential pair 3.
As a function of the output signal which is to be sent, a signal current of differing level flows through the cascade transistors 6, 7. Because the output guideline value gDS of the cascade transistors 6, 7, depends on the current IDS through the cascade transistors, a signal-dependent load takes effect on the differential pair transistors 4, 5, which leads to non-linearities.
In addition to this, when the reference voltages Vref1 and Vref2 are switched over, voltage peaks or spikes occur, which can likewise have a negative effect on the linearity of the line driver. Moreover, the reference voltages Vref1 and Vref2 created in accordance with
The present invention is therefore based on the object of providing a line driver with improved linearity. In addition to this, the line driver should also satisfy the usual requirements such as, for example, low supply voltage and low power consumption and area coverage.
According to the invention, the line driver comprises several driver stages connected in parallel, which in each case comprise a differential pair with two transistors which are actuated in a differential manner as a function of the data which is to be transmitted. In addition to this, a separate cascade transistor pair is allocated to each differential pair, i.e. by contrast with the prior art represented in
The summation of the currents of the individual driver stages is effected in the signal path “behind” the individual cascade transistors. Because in the deflected or actuated state, there is always a maximum current flowing through the one cascade transistor of each driver stage, and always a minimum current flowing through the other cascade transistor of the individual driver stage in each case, the load impedance of the differential pair of the individual driver stage, seen in differential consideration, is independent of the signal amplitude. This property increases the linearity of the line driver.
A further improvement in linearity can be achieved in that the differential pair transistors are actuated with the aid of a suitable preliminary stage or control circuit, in such a way that an actuation of the minimum current through one branch or transistor of the differential pair is not zero, but that a low quiescent current is flowing. It is true that an adequate linearity will be guaranteed if the minimum current through a branch is zero, but nevertheless the linearity is better with a quiescent current which differs from zero. The preliminary stage of the individual driver stage is designed in such a way that it can be adjusted relatively precisely to the common mode level and to the signal level swing, independently of each other. Because the preliminary stage allows for an independent adjustment and setting of the common mode level and of the signal level swing of the control signals for the actuation of the individual differential pair transistors in each case, an adjustable and symmetrical edge gradient of the transmission signal can be achieved; i.e. the same time constants are guaranteed for rising edges and for falling edges of the control signals, which serve to actuate the differential pair transistors in each case.
In the preliminary stages or control circuits, which in each case are provided for the actuation of the differential pair transistors of a corresponding driver stage, transfer gates are used instead of the NMOS transistors conventionally used, in order for the linearity of the switch for the deflection of the individual lift current to be increased, in order thereby to increase the symmetry of the signal edges used for the actuation of the individual differential pair transistors, and to suppress the occurrence of an AC signal at the foot point of the individual differential pair. By means of this measure too, the linearity of the transmission signal will also be increased.
Overall, therefore, it is possible with the aid of the present invention for a line driver to be created which, in addition to the usual requirements, such as low supply voltage, for example, or low power consumption and surface area, also has a high linearity and a high, adjustable, and symmetrical edge gradient of the transmission signals. In this situation, the present invention is particularly well-suited for the realisation of high-linear line drivers for a wirebound data transmission with high bit rates, for use, for example, in fast Ethernet transmission or transmission/reception devices. Naturally, however, the present invention is not restricted to this preferred scope of application, but can be applied in every situation in which high-linear transmission signals are desirable, i.e. in particular with a wireless data transmission.
The present invention is described in greater detail hereinafter by reference to the appended drawings, on the basis of a preferred embodiment.
With the line driver shown in
The line driver shown in
In addition to this, with the embodiment shown in
As with the conventional line driver shown in
The layout of the control circuit 2 is explained in greater detail hereinafter, by making reference to
Each control circuit 2 has transfer gates 14, 15, which are actuated as a function of the data which is to be transmitted, i.e. by a digital word being imposed, with the aid of corresponding complementary control signals DW and DW, with opposed polarity. The transfer gates 14 and 15 respectively therefore control the current Isig delivered from an adjustable current source 24, either to a right-hand resistor 19 or to a left-hand resistor 21, whereby the resistor values of the two resistors 19 and 21 are identical. The resistors 19 and 21 respectively form, together with resistors 18 and 20 respectively, a voltage divider which is driven by the impressed current Icm from an adjustable current source 22 or 23 respectively, whereby, as is shown in
By means of the current ICM and the resistance values of the resistors 18, 20, the “common mode” level can be set independently of the signal level swing referred to heretofore, whereby the common mode level VCM is calculated as follows:
VCM=0.5·(VGA+VGB) (2)
An adjustment of the common mode level independently of the signal level swing is not possible with the circuit arrangement shown in
In addition to this, by the use of the transfer gate 14, 15 instead of NMOS transistors the switch resistance can be linearised, which in turn improves the symmetry of the signal edges at the voltage potentials VGA/VGB and VLA/VLB.
With the embodiment shown in
The differential pair transistors 4, 5, and cascade transistors 6, 7, shown in
With the embodiment shown in
Tr=Tf=CG·(RA+RB) (3)
For the situation in which the capacitances 16 and 17 are not zero, a complicated expression arises for Tr and Tf, whereby in this case Tr=Tf also applies.
In this situation, CG corresponds to the gate capacitance of the differential pair transistors 4, 5, and RA and RB respectively correspond to the resistance value of the resistors 20 and 18 respectively.
Number | Date | Country | Kind |
---|---|---|---|
101 34 874 | Jul 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/06402 | 6/11/2002 | WO | 00 | 7/29/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/009475 | 1/30/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5945847 | Ransijn | Aug 1999 | A |
5966382 | Fawal et al. | Oct 1999 | A |
6687286 | Leonowich et al. | Feb 2004 | B1 |
20020090034 | Lu | Jul 2002 | A1 |
Number | Date | Country |
---|---|---|
0 078 347 | Oct 1981 | EP |
Number | Date | Country | |
---|---|---|---|
20040257114 A1 | Dec 2004 | US |