Not applicable.
The invention relates to line array loudspeaker loudspeakers and to portable loudspeakers for performers and orators or other events using sound amplification.
Line array loudspeaker loudspeakers are loudspeakers in which the radiating surface is long and narrow and typically a straight line, radiating in a direction perpendicular to the line. Line speakers are discussed generally at pages 35 through 36 of Acoustical Engineering, 1991 Edition, by Harry F. Olsen.
One characteristic of line array loudspeakers is that in the near field, the sound energy intensity decreases less rapidly than with point sources. The sound energy intensity of point sources drops off approximately as
where r is the distance from the point source to the listening point. In the near field, the sound energy intensity from line array loudspeakers drops off less rapidly, theoretically as
Practical implementations of line array loudspeakers are frequently individual acoustical drivers arranged in a line.
It is an important object of the invention to provide an improved line array loudspeakers. It is another important object of the invention to provide an improved loudspeaker system for performers.
In one aspect of the invention a loudspeaker system includes a first loudspeaker array. The first array includes an enclosure having a width and a height and at least six acoustic drivers having radiating surfaces, each of the acoustic drivers having a diameter less than three inches. The at least six drivers are positioned in the enclosure in a first substantially straight line, substantially regularly spaced so that the edges of the radiating surfaces are less than two inches apart, wherein the first array is constructed and arranged to radiate sound in a predetermined frequency range.
In another aspect of the invention, a loudspeaker system, includes a first portable array module, including a portable enclosure, and at least six acoustic drivers, positioned in the enclosure in a substantially straight line. The loudspeaker system also includes a second portable array, including a second portable enclosure and a plurality of acoustic drivers, positioned in a substantially straight line; and an attachment system for attaching the first array to the second portable array in a manner so as to extend the substantially straight line.
In another aspect of the invention, a loudspeaker array module includes a portable enclosure having an attachment system for attaching the module to a second module. The loudspeaker array module includes at least six acoustic drivers. Each of the drivers has a radiating surface, each of the drivers having a diameter less than three inches, the at least six drivers positioned in the enclosure in a substantially straight line, regularly spaced so that the edges of the radiating surfaces are less than one inch apart. The loudspeaker array module is constructed and arranged to radiate sound over essentially the full range of the audible frequency spectrum.
In another aspect of the invention, a method for improving the power transduced per unit radiating area of a line array loudspeaker array includes mounting in a substantially straight line a plurality of acoustic drivers, each of the drivers having a diameter of less than three inches and each of the drivers having a radiating surface having an edge; and placing the acoustic drivers in the line so that the edges of radiating surfaces of adjacent acoustic drivers are separated by no greater than one inch.
A loudspeaker system for a live source of sound, includes a line array loudspeaker comprising a line array plurality of acoustic drivers. Each of the drivers has a diameter less than three inches. The plurality of drivers are positioned in an enclosure in a substantially straight line, regularly spaced less than one inch apart, the line array being constructed and arranged to be placed in the near vicinity of the live source of sound, facing an audience.
In yet another aspect of the invention, a loudspeaker system for a public facility having a listening area having a floor and an intended listening height range above the floor, includes a line loudspeaker array having a top and a bottom, comprising a plurality of acoustical drivers array in a substantially straight line connecting the top and the bottom, the top and the bottom defining planes perpendicular to the line. The array is dimensioned and positioned such that the intended listening height lies between the plane defined by the top and the plane defined by the bottom and such that the bottom is substantially in the vicinity of the floor.
Other features, objects, and advantages will become apparent from the following detailed description, when read in connection with the accompanying drawing in which:
a and 2b are front plan views of other line arrays according to the invention;
c is a cross-sectional view of the line array of
a-4d are diagrammatic views illustrating features of the invention;
With reference now to the drawing and more particularly to
In one embodiment, line array loudspeaker module 12 contains twelve 2.5 inch diameter cone type acoustical drivers, commercially available from Bose Corporation of Framingham, Mass., mounted approximately 3 inches center to center, so that there is a gap of approximately 0.75 inches between the edges of the radiating cones. Enclosure 13 is a closed back structure approximately thirty six inches in height h, three inches in width w, and four inches in depth d. The aspect ratio (the height relative to the width) of the module is 12:1. In typical line array systems having a plurality of line array modules, the aspect ratio may be 24:1 or 36:1. The line array module 12 weighs about 19 pounds, so that it is easily portable. The line array is flat on the bottom, so that it can be placed on the floor, or can be easily attached to a stabilizing stand (not shown). The line array is constructed and arranged for an operating range of about seven octaves, for example from about 120 Hz to 15 kHz.
The 2.5 inch diameter of each acoustical driver is equivalent to the wavelength of a sound wave having a frequency of about 5.4 kHz, which is approximately one octave below the highest frequency for which the loudspeaker system is designed. A line array loudspeaker using smaller diameter acoustical drivers maintains a smooth vertical dispersion to higher frequencies and a slow drop in sound energy intensity. An additional benefit of a line array loudspeaker according to the invention is the line array can transduce relatively large amounts of electrical energy. In one embodiment, a line array according to the invention can transduce seven watts of electrical power per square inch of radiating surface to sound waves.
Referring now to
The sound energy intensity from a line array loudspeaker according to the invention drops off less rapidly than
Referring now to
Referring to
b illustrates a situation in which the floor is “raked,” that is the floor is not a single horizontal plane but is rather an inclined plane or a series of multiple horizontal stepped planes or tiers. In
c illustrates another configuration with a raked floor, in which the floor is slanted at a raking angle θ (if the floor is planar, the raking angle is the angle of the floor relative to horizontal; if the floor is a series of multiple horizontal planes or tiers, the raking angle is the angle relative to horizontal of a line connecting common points, such of the front edge of the tiers). In
The configurations of
The small size, portability, modularity (described below), resistance to feedback through microphones, and low cost due to the simple electronics (described below) make line arrays according to the invention particularly attractive for performing groups. Each member of the group can have a line array in his or her near vicinity (typically to the side or behind the performer). This arrangement eliminates the need for expensive mixing circuitry, and for the need for a person to adjust the mixing circuitry, and for the need for so-called “back line” loudspeakers. Additionally, this arrangement provides a more pleasing and realistic psycho-acoustic effect for the audience, because the sound from each performer appears to come from the vicinity of the performer, not from a common loudspeaker system that may be in a location remote from one of the performers.
The small size, portability, modularity, resistance to feedback, and low cost also make line arrays according to the invention particularly attractive for use as portable sound systems for use in public places, for example as a public address system with an attached microphone for an orator, or with a source of audio signals to play pre-recorded messages and music.
A line array according to the invention can also be used in auditoria, meeting rooms, houses of worship, performance venues, and similar spaces in built-in, permanently attached configurations. A line array according to the invention can be placed with the line oriented vertically, and of appropriate length and placement such that the heads of the audience and performers are between horizontal planes defined by the top and bottom of the line array. Such a line array is advantageous because a line array according to the invention can be more easily integrated into the architecture, relatively easily installed, accessed for maintenance, while being unobtrusive. The relative distance between the line array and the performer and the line array and the audience is very flexible because of the gradual sound energy intensity drop off and the low likelihood of feedback through microphones.
Referring now to
Referring to
If desired, in applications which require more bass sound energy, the line array loudspeaker may be accompanied by a separate bass unit, to augment the bass sound energy radiated by the line array loudspeaker. The separate bass unit may be placed remotely or nearby from the line array loudspeaker, and if placed nearby, may be attached to the base of the line array loudspeaker array to assist in stabilizing the line array loudspeaker.
It is evident that those skilled in the art may now make numerous modifications of and departures from the specific apparatus and techniques disclosed herein. Consequently, the invention is to be construed as embracing each and every novel feature and novel combination of features present in or possessed by the apparatus and techniques disclosed herein and limited only by the spirit and scope of the appended claims.
Not applicable.
Number | Name | Date | Kind |
---|---|---|---|
3125181 | Pawloski | Mar 1964 | A |
3299206 | Klepper | Jan 1967 | A |
4031318 | Pitre | Jun 1977 | A |
4042778 | Clinton | Aug 1977 | A |
4267405 | Russell | May 1981 | A |
4797633 | Humphrey | Jan 1989 | A |
4940108 | Selby | Jul 1990 | A |
5588063 | Edgar | Dec 1996 | A |
5802190 | Ferren | Sep 1998 | A |
6101261 | Brown et al. | Aug 2000 | A |
6215881 | Azima et al. | Apr 2001 | B1 |
6556684 | Macey | Apr 2003 | B1 |
6628793 | Porzilli et al. | Sep 2003 | B1 |
6643379 | Onglao | Nov 2003 | B1 |
6834113 | Liljehag et al. | Dec 2004 | B1 |
Number | Date | Country |
---|---|---|
0 791 279 | May 1996 | EP |
H5-276591 | Oct 1993 | JP |
06307107 | Jan 1994 | JP |
06225379 | Dec 1994 | JP |
H8-251686 | Sep 1996 | JP |
WO9614723 | May 1996 | WO |