Claims
- 1. In a high speed printer wherein a rotatable shaft mounted platen controls the advancement of a print medium in a correlated manner with the lateral line printing movement of a print head, the improvement comprising:
- a line feed mechanism for selectively effecting single and logic controlled multiple line feeding, said mechanism including:
- coupling means including a platen gear coupled to the shaft of said rotatable platen of the printer, said platen gear being mounted for eccentric movement relative to the axis of said platen shaft, while remaining continuously rotatably coupled thereto;
- drive means including a rotatably driven drive gear;
- first controllably displaceable means for rotatably supporting said platen gear about said platen shaft;
- ratchet means positioned near one end of and rotatable with said platen;
- second controllably displaceable means mounted so as to selectively engage said ratchet means; and
- operable line feed actuator means responsively coupled to both said first and second displaceable means, said actuator means when operated in a correlated manner with the lateral movement of the print head, causing said first means to be displaced from a first position whereat said platen gear is out of engagement with said drive gear to a second position whereat said gears are in coupling engagement, thereby causing said platen to rotate and advance a print medium engaged thereby, and said actuator means when operated further causing at least in part said second means to be displaced from a first position in resilient holding engagement with said ratchet means to a second position out of engagement with said ratchet means so as to release said platen for rotation.
- 2. In a high speed printer in accordance with claim 1, said drive means further including:
- a second rotatable gear adapted for coupling both to a lead screw associated with the printer and with said first mentioned drive gear.
- 3. In a high speed printer in accordance with claim 1, said operable actuator means comprising a solenoid with a pivotal armature, the movement of said armature from a first position when the solenoid is de-energized to a second position when the solenoid is energized responsively causing at least said first means directly to be displaced from said first to said second position thereof.
- 4. In a high speed printer in accordance with claim 3, said first displaceable means comprising a first lever supported on an intermediate pivot, said lever having one end formed with an axially apertured hub on which said platen gear is rotatably mounted, with the other end being spring-biased against and cam-actuated by an associated end of said pivotal armature, and said second displaceable means also comprising a second lever supported on an intermediate pivot, with one end thereof normally being in springbiased contact with teeth formed in the periphery of said ratchet means, and the other end being coupled to the end of said armature opposite the cam-actuated end thereof associated with said first lever, said second lever thereby being pivotally responsive to the rotational movement of said ratchet means and to the movement of said armature when said solenoid is energized.
- 5. In a printer mechanism in accordance with claim 4, said coupling means, including the platen gear, comprising a modified Oldham coupling, and said ratchet means comprising a ratchet wheel secured to one end of the platen of the printer adjacent said platen gear.
- 6. In a high speed printer mechanism wherein a carriage-mounted dot matrix print head; having a plurality of selectively actuable and logic controlled print wires, is reciprocally driven back and forth in close proximity to and successively along different line printing paths extending across the width dimension of a print medium which engages and is driven by a rotatable shaft mounted platen, and wherein a reversible inked ribbon is interposed between the print head and the print medium for transferring dot matrix character images to and imprinting them on said medium while the latter is drawn taut against said platen, said combination further comprising:
- a rotatably driven and selectively reversible lead screw coupled to said carriage for driving said print head reciprocably across the width dimension of said medium; and
- a line feed mechanism for periodically coupling said rotatable platen to said lead screw in a manner that correlates the lateral displacement of said carriage with both the angular displacement of said platen, and the linear advancement of said print medium engaged by and drawn over said platen, said line feed mechanism including:
- coupling means including a platen gear coupled to the shaft of said rotatable platen of the printer, said platen gear being mounted for arcuate movement in a plane transverse to the axis of said platen shaft while remaining continuously rotatably coupled thereto;
- drive means including a drive gear rotatably coupled to said lead screw and a second intermediate gear continuously coupled to said drive gear;
- first controllably displaceable means for rotatably supporting said platen gear about said platen shaft;
- ratchet means positioned near one end of and rotatable with said platen;
- second controllably displaceable means mounted so as to selectively engage said ratchet means;
- a selectively energizable solenoid having a dual pivotal armature, one end of said armature responsively engaging said first displaceable means and the opposite end of said armature being responsively coupled to said second displaceable means, said solenoid when energized in a correlated manner with the advancement of said carriage, causing said armature thereof to be displaced from a first to a second position and thereby causing said first means engaged therewith to be displaced from a first position whereat said platen gear mounted thereon is out of engagement with said intermediate gear to a second position whereat said gears are in coupling engagement, thus causing said platen to rotate with said drive and intermediate gears and advance the print medium engagingly drawn thereover, and the armature of said solenoid when energized further causing at least in part said second means coupled thereto to be displaced from a first position in engagement with said ratchet means to a second position out of engagement with said ratchet means so as to release said platen for rotation.
- 7. In a high speed printer mechanism in accordance with claim 6, said first displaceable means comprising a first lever supported on an intermediate pivot, said lever having one end formed with an oversized axially apertured hub on which said platen gear is rotatably mounted, with the other end being spring-biased against and cam-actuated by an associated end of said pivotal armature, and said second displaceable means also comprising a second lever supported on an intermediate pivot, with one end thereof normally being in spring-biased contact with teeth formed in the periphery of said ratchet means, and the other end being pivotally connected to the end of said armature opposite the cam-actuated end thereof associated with said first lever, said second lever thereby being pivotally responsive to the rotational displacement of said ratchet means and to movement of said armature when said solenoid is energized, and wherein said ratchet means comprises a ratchet wheel secured to one end of the platen of the printer adjacent said platen gear.
- 8. In a high speed printer in accordance with claim 6, said drive gear and platen gear being chosen to have diameters that result in said platen, when coupled to said lead screw, rotating by an amount which advances a print medium in contact therewith one line space for every character column advancement of said carriage, and wherein said lead screw has an axial length that allows said carriage to be advanced at least one character column space to the left of the normal first character print column of the printer, and wherein said solenoid is not energized on the return of said carriage until it is indexed said one space to the left of the first character print column, at which time the solenoid is energized to effect the rotation of said platen to advance said print medium by said one line space while said carriage advances said print head to the first dot position associated with the first dot matrix character print column.
- 9. In a high speed printer mechanism in accordance with claim 7, said platen gear of said coupling means being formed with an outwardly protruding pair of diametrically disposed and aligned integral ribs formed on one side surface thereof, said coupling means further including a drive member secured to the shaft of said platen, and having an outwardly protruding pair of diametrically disposed and aligned ribs formed on the side thereof nearest said platen, said coupling means further including an intermediate member having an oversized aperture adapted for mounting said member about and for allowing eccentric displacement thereof relative to the axis of said platen shaft, said intermediate member having a pair of diametrically disposed and aligned recesses formed in each side surface thereof, with the two pairs of recesses being orthogonally disposed relative to each other, and dimensioned so as to receive the respectively adjacent pairs of ribs formed in said platen gear and drive member on opposite sides thereof.
- 10. A compact, mechanically driven line feed printer mechanism for use in selectively rotating a platen to advance a print medium drawn thereover one or more line spaces at a time, said mechanism comprising:
- coupling means including a platen gear adapted for coupling to an associated shaft of a platen, said platen gear being mounted for eccentric displacement relative to the axis of the platen shaft while remaining continuously coupled thereto;
- drive means including a rotatably driven drive gear;
- first controllably displaceable means for rotatably supporting said platen gear coaxially of said platen shaft;
- ratchet means adapted for mounting on and rotation with the associated platen shaft;
- second controllably displaceable means mounted so as to selectively engage said ratchet means; and
- selectively energizable line feed actuator means responsively coupled to both said first and second displaceable means, said actuator means when energized in a correlated manner with said driven drive gear, causing said first means to be displaced from a first position whereat said platen gear is out of engagement with said drive gear to a second position whereat said gears are in coupling engagement, thereby imparting rotational movement to the associated platen then coupled thereto, and said actuator means when energized further causing at least in part said second means to be displaced from a first position in resiliently holding engagement with said ratchet means to a second position out of engagement with said ratchet means so as to release the associated platen for rotation.
- 11. A line feed mechanism in accordance with claim 10 wherein said actuator means comprises a solenoid with a pivotal armature, the movement of said armature from a first position when the solenoid is de-energized to a second position when the solenoid is energized responsively causing at least said first means directly to be displaced from said first to said second position thereof.
- 12. A line feed mechanism in accordance with claim 11 wherein said first displaceable means comprises a first lever supported on an intermediate pivot, said lever having one end formed with an oversized axially apertured hub on which said platen gear is rotatably mounted, with the other end being spring-biased against and cam-actuated by an associated end of said pivotal armature, wherein said second displaceable means also comprises a second lever supported on an intermediate pivot, with one end thereof normally being in spring-biased contact with teeth formed in the periphery of said ratchet means, and the other end being pivotally connected to the end of said armature opposite the cam-actuated end thereof associated with said first lever, said second lever thereby being pivotally responsive to the rotational movement of said ratchet means and to pivotal movement of said armature of said solenoid when energized, and wherein said ratchet means comprises a ratchet wheel.
- 13. A line feed mechanism in accordance with claim 12 wherein said armature is mounted for controlled dual pivotal movement relative to two pole faces defined by the free ends of a U-shaped core of said solenoid, said solenoid when energized causing the cam-actuated end of said armature to be pivoted by magnetic attraction from a non-actuated position, spaced from an adjacent one of said pole faces, into a first pivoted position in contact with said one pole face, thereby causing said first lever to be displaced by cam-action from said first to said second position, to thereby effect the rotation of both said platen and said ratchet wheel when driven by said drive means, and said solenoid when energized, at least in cooperation with said ratchet wheel when rotated, further causing the coupled end of said armature to be pivoted, at least in part by magnetic attraction, from said first pivoted position, spaced from the other and adjacent pole face, into contact with said other pole face, whereby both pole faces are in contact with said armature, thereby, causing said second lever coupled to said armature to be displaced from said first to said second position.
- 14. A line feed mechanism in accordance with claim 12, further comprising a second drive gear adapted for mounting on and rotation with an associated lead screw of a printer, said second drive gear being positioned so as to be in continuous coupling engagement with said first mentioned drive gear, and wherein said platen gear of said coupling means is formed with an outwardly protruding pair of diametrically disposed and aligned integral ribs formed on one side surface thereof, said coupling means further including an angularly adjustable drive member secured to the shaft of said platen, and having an outwardly protruding pair of diametrically disposed and aligned ribs formed on the side thereof nearest said platen, said coupling means further including an intermediate member having an oversized aperture adapted for mounting said member about and for allowing eccentric displacement thereof relative to the axis of said platen shaft, said intermediate member having a pair of diametrically disposed and aligned recesses formed in each side surface thereof, with the two pairs of recesses being orthogonally disposed relative to each other, and dimensioned so as to receive the respectively adjacent pairs of ribs formed in said platen gear and drive member on opposite sides thereof.
- 15. In a printer having a rotatably driven drive gear, an improved line feed mechanism of the type responsive to a line feed signal for selectively effecting single or multiple line feed modes of a rotatable platen wherein the improvement comprises:
- a rotatable gear, the axis of which is shiftable between first and second positions, the gear being normally out of engagement with the drive gear and generally concentric with the platen at the first axis position, and being in engagement with the drive gear and eccentric relative to the platen at the second axis position;
- means for normally inhibiting free rotation of the platen;
- coupling means for continuously coupling the gear to the platen for rotation therewith and for permitting the gear to rotate eccentrically relative to the platen;
- means responsive to a line feed signal for shifting the gear axis to the second position to rotate the platen; and
- means responsive to a line feed signal which persists for a time longer than that required to effect the single line feed mode of the platen for disabling the inhibiting means so that the platen may freely rotate in the multiple line feed mode until cessation of the line feed signal.
- 16. The line feed mechanism of claim 15 wherein the shifting means comprises:
- an armature one end of which is pivotable between first and second positions about a first pivot at its other end to move the gear axis between its respective first and second positions; and
- electromagnetic means for attracting the one armature and to its second position in response to the line feed signal, the other armature end being normally unattracted by the electromagnetic means.
- 17. The line feed mechanism of claim 16 wherein the inhibiting means and the disabling means comprise:
- a lever pivotable on a fixed second pivot and pivotally connected at one end by the first pivot to the other of the armature, the other end of the lever normally resiliently and frictionally engaging the platen; and
- means responsive to rotation of the platen for pivoting the lever on the second pivot to move the other armature end, the one lever end and the first pivot proximate the electromagnetic means for attraction thereby so that the other lever end is disengaged from the platen.
Parent Case Info
This application is a continuation of my copending application, Ser. No. 468,048, filed May 8, 1974, now abandoned.
US Referenced Citations (5)
Continuations (1)
|
Number |
Date |
Country |
Parent |
468048 |
May 1974 |
|