This Application is the U.S. National Phase of International Application Number PCT/IB2011/002574 filed on Sep. 15, 2011, which claims priority to Great Britain Application No. 1015594.3 filed on Sep. 17, 2010.
This invention relates to techniques for laying lines and for making connections between sequential lengths of line in offshore line-laying operations. The invention is particularly concerned with making connections between lengths of chain and lengths of wire in the installation of mooring lines for FPSOs and the like. However, the principles of the invention may have wider application in the offshore industry and the sequential lengths of line are not necessarily of different line types.
FPSOs and the like are typically moored on site for many years. The FPSO is held in place with a mooring system comprising several legs radiating from the FPSO. Each leg of the mooring system is defined by at least one mooring line terminating in an anchor such as a suction pile embedded in the seabed.
Anchors and mooring lines are typically pre-installed up to three months before the arrival of the FPSO, to allow for issues such as soil settlement. The mooring lines are deployed from an installation vessel, attached to the anchors and then abandoned on the seabed until being recovered when they are required to moor the FPSO. The mooring lines are recovered, transferred to and secured to the FPSO upon its arrival on site.
Each mooring line comprises, in sequence from bottom to top, a bottom or ground chain attached to the anchor, a section of wire (typically spiral strand wire or SSW) attached to the ground chain, and a top chain attached to the wire section. Various connectors make the necessary connections between these line sections.
The wire section constitutes most of the length of the mooring line, as—for a given tensile strength—wire is lighter, more compact to store and less expensive than chain. Chains are used instead of wire at the bottom and top of the mooring line to avoid damage to the wire at those vulnerable locations.
Mooring lines are typically installed by service vessels such as lay barges. Such vessels are equipped with various cranes and winches for performing subsea operations including line laying and pipe laying. As such vessels are expensive assets that are much in demand around the world, there is commercial pressure to reduce the time that they need to spend on site performing operations such as laying mooring lines.
The bottom chain, wire section and top chain must be deployed in sequence to create the mooring line and connectors must be placed between each of those parts of the mooring line. The wire is typically deployed from a drum of a deployment winch on the installation vessel. The chain is typically deployed from a gypsy wheel. The gypsy wheel may be driven by the same deployment winch as the drum but the deployment axes of the gypsy wheel and drum will be horizontally separate, for example spaced fore-and-aft with respect to the hull of the vessel.
The mooring line constitutes a heavy load that, in existing arrangements, necessitates using a main crane of the installation vessel. Existing methods for installing mooring lines employ a fixed outrigger at which connections between the line sections are made. They involve extensive use of the main crane to transfer the load repeatedly between the deployment axes of the wire drum and the gypsy wheel and the outrigger. ROV disconnection is required. Existing methods also involve considerable manhandling of moving loads.
The main crane of the installation vessel is in much demand for other operations such as overboarding suction piles. Hence, main crane activities tend to lie on the critical path of a mooring line installation operation. This reduces productivity and increases the length of time that the installation vessel needs to remain on site.
Use of the main crane also adds to the safety risks of manhandling, and introduces technical risks associated with heavy lifting in a confined and congested area.
Existing techniques for installing mooring lines also involve a risk of damaging the wire section by creating loops or bends in the wire or by damaging its protective coating. The wire is strong in tension but is fragile when subjected to cross-axis loads, bending and abrasion.
It is against this background that the present invention has been made. From one aspect, the invention resides in a line-handling apparatus for use in assembling a line being deployed from a vessel, that line comprising at least two sections in longitudinal sequence, wherein the apparatus comprises a hang-off carriage having at least one line support adapted to support the line, the line support being capable of supporting a length of line hanging from the carriage via that support, the carriage being movable around a horizontal area located beneath separate line deployment locations on the vessel spaced horizontally from each other, to align the line support with each line deployment location, and to move the supported length of line between the line deployment locations for connection of subsequent sections of the line.
Thus, the invention eases and simplifies the connection between sequential parts of the mooring lines. It does so by hanging the load deployed (for example, the bottom chain) and transferring the load below the next connection point (for example, the wire spooled on the drum of the deployment winch). The load is hung from a platform equipped with a chain stopper and a socket clamp sliding on rails underneath the deployment winch.
The invention provides a movable hang-off structure whose movement may be automated or semi-automated. The hang-off structure is used for the connection and disconnection of large diameter, heavy chains to wire sockets during various phases of mooring line deployment.
The moving hang-off structure of the invention allows parallel activity with the main crane and so reduces main crane lifting operations as much as possible to optimise operational time. Indeed, it is possible to reduce lifting operations by the main crane in a ratio of 1 to 5. To create a typical FPSO mooring system comprising sixteen mooring lines, only sixteen main crane handling operations will be required, excluding overboarding the suction piles. This compares with eighty such operations when using a standard fixed outrigger structure. Thus, main crane activities feature less on the critical path, shortening the deployment operation. It is anticipated that for a typical FPSO mooring deployment operation lasting circa forty days, 8-10% of the installation vessel time may be saved. This greatly increases the productivity of the vessel and its crew.
The invention also improves safety, by removing the requirement to manhandle moving loads during chain-to-wire connection operations. It overcomes technical problems of heavy lifting in a confined and congested area. It frees deck space on the installation vessel. It provides safe and easy access to manipulate heavy items such as H-link connectors and other subsea connector elements. It also reduces the risk of damage to the wire by holding and transferring the wire gently without imparting significant cross-axis loads or exposing the wire to abrasion.
The horizontal area in which the carriage is movable may extend beyond at least one of the deployment locations, for example to within the working radius of a crane for loading a connector element onto the line support.
Preferably, at least one of the line sections is a wire and the carriage has a wire support adapted to support the wire. It is also possible for at least one of the line sections to be a chain and for the carriage to have a chain support adapted to support the chain. In a preferred embodiment of the invention to be described below, the line comprises at least one section of chain in longitudinal sequence with at least one section of wire and the carriage comprises: a chain support adapted to support the chain; and a wire support adapted to support the wire; and the line deployment locations are chain and wire deployment locations, the carriage being movable to align the chain support with the chain deployment location and the wire support with the wire deployment location, and to move the supported length of line between said deployment locations for connection of subsequent sections of the line.
Advantageously, the line support is adapted to support a connector element that is attached or attachable to a line section. In this way, the carriage can be used to transport a connector element; the carriage can also be used to suspend a line section, such as a wire, from a connector element without touching the line of that section itself. For this purpose, the line support suitably comprises a socket that narrows downwardly, and preferably comprises formations that are shaped to complement different connector elements.
Conveniently, the carriage is mounted to an outrigger platform that is movable along the hull of the vessel. That platform is suitably mounted to the vessel by at least one rail extending generally horizontally along the hull. If the carriage is movable inboard and outboard relative to the platform, this allows the carriage to be moved in two dimensions relative to the hull.
The platform preferably defines a slot for accommodating hanging chain or wire, that slot extending in an outboard direction and being open to its outboard end. In that case, the carriage suitably defines a gap aligned with the slot of the platform. For example, the carriage may comprise a chassis having spaced arms that define the gap between them: the chassis may be generally U-shaped, having generally parallel arms joined by a cross-member. The carriage preferably also comprises a gate member on its outboard side that closes the gap and that can be opened to abandon the line.
The line support advantageously comprises portions that are separable to allow the line to be deployed. For example, the carriage may comprise a platen that carries the line support, the platen being separable into jaws that divide the line support. In that case, a junction between the jaws suitably extends along the gap in the chassis.
In the preferred embodiment described below, at least one line support is a chain support comprising a collar for surrounding a chain, which collar supports chain-engaging members that are co-operable to embrace and engage the chain. The chain-engaging members preferably cooperate to define a plate that is supported on top of the collar, and preferably have chain-engaging formations shaped to engage successive links of the chain. Advantageously, the collar is pivotable about the longitudinal axis of the chain to align the chain-engaging formations with the links of the chain. Where the chain support comprises portions that are separable, those portions suitably include portions of the collar and respective chain-engaging members attached to each portion of the collar.
More generally, the apparatus preferably has at least two line supports adapted to support different types of line. Those line supports are preferably disposed one outboard and one inboard of each other.
The inventive concept also embraces a line-handling method for use in assembling a line being deployed from a vessel, that line comprising at least two sections in longitudinal sequence, wherein the method comprises supporting the line to hang from a carriage movable around a horizontal area located beneath deployment locations on the vessel spaced horizontally from each other, and moving the carriage to bring the line into alignment with a deployment location for connection of subsequent sections of the line.
Where the line comprises at least one section of chain in longitudinal sequence with at least one section of wire, the method suitably comprises moving a supported length of the chain into alignment with a wire deployment location, and/or moving a supported length of the wire into alignment with a chain deployment location.
Part of the carriage may be divided to provide clearance for deployment of the chain or wire without moving the carriage, and the line may be abandoned from the carriage in an outboard direction, optionally after opening part of the carriage to permit said abandonment.
The inventive concept extends to a vessel fitted with the line-handling apparatus of the invention or operating in accordance with the method of the invention.
In order that the invention may be more readily understood, reference will now be made, by way of example, to the accompanying drawings in which:
Referring firstly to
The FPSO will be held in place with a passive spread mooring system comprising sixteen semi-taut legs arranged in a 4×4 spread-type pattern. In other words, the FPSO will be moored with a total of sixteen mooring lines 12 in four groups of four, one group at each corner of the FPSO. Each mooring line 12 is anchored by a respective suction pile 14 embedded in the seabed 10. A mooring line 12 and the associated suction pile 14 together define one leg of the mooring system. The suction piles 14 may be pre-installed some time before attachment of the mooring lines 12 or may be installed during installation of the mooring lines 12.
Each mooring line 12 comprises, in sequence from bottom to top, a bottom or ground chain 16 attached to the associated suction pile 14, a length of spiral strand wire (SSW) 18 attached to the ground chain 16 that constitutes most of the length of the mooring line 12, and a top chain 20 attached to the SSW section 18. Different connectors such as H-Links, a twisted H-Link, Y-links and Balltec subsea connectors make the connection between different line components as will be explained. Balltec subsea connectors are supplied by Balltec Ltd of Lancashire, UK and have ball-and-roller engagement mechanisms.
The SSW 18 will generally be of coated steel but recent developments suggest that it may be possible to use a synthetic plastics material: references to ‘wire’ in this specification are not intended to limit the meaning only to wires of metallic materials.
The suction piles 14 and mooring lines 12 are typically pre-installed up to three months before the arrival of the FPSO. The mooring lines 12 are deployed from an installation vessel, attached to the suction piles 14 and then abandoned on the seabed 10 until being recovered when they are required to moor the FPSO. As can be seen in
Moving on then to
As will be described more fully later, the lower section 24 of the ground chain 16 is attached to the associated suction pile 14 before the suction pile 14 is overboarded and lowered to penetrate the seabed 10. When the FPSO is moored, the lower section 24 of the ground chain 16 and the connector 30 are buried under the seabed 10 and the upper section 26 of the ground chain 16 extends from there above the seabed 10 to the SSW 18 via connector 32.
In a non-limiting example: the length of the top chain 20 is between 165 m and 200 m; the lower section 24 of the ground chain 16 is 23 m long; the upper section 26 of the ground chain 16 is 182 m long; and the SSW section 18 is 1285 m long.
Referring now to
The lay barge 36 is shown in
As
As best shown in
The invention adds a sliding hang-off platform (SHOP) 58 disposed generally beneath the deployment winch 52, outboard of the hull 60 of the lay barge 36. The hang-off platform 58 slides longitudinally on parallel upper and lower rails 62 attached to the outer side of the hull 60, extending fore-and-aft. Those rails 62 and the overall structure of the hang-off platform 58 are best appreciated in the detail views of
The SSW 18 is pre-fitted with padeye connector elements at both ends for connection to complementary connector elements of the bottom and top chains 16, 20 in due course. The padeye connector element at the leading end of the SSW 18 provides a convenient connection point for the transporter arrangement and for the service wire of the deployment winch 52.
A tensioner 70 maintains back-tension in the SSW 18 during trans-spooling and is mounted on a rack that oscillates fore-and-aft with respect to the lay barge 36 to work as a spooler during that operation. Typically the tensioner 70 will have a capacity of 20 tonnes and will apply 15 tonnes of back-tension to the SSW 18.
Moving on now to
The generally vertical uprights 72 on the inboard side of the platform 58 are attached to the rails 62 via bearings enabling relative fore-and-aft movement. In each of the four sets of members, the generally horizontal outrigger 74 extends in an outboard direction from the top of the upright 72 and the inclined strut 76 extends from the bottom of the upright 72 to the outboard end of the outrigger 74. Consequently, the port-to-starboard cross-section of the framework through the upright 72, outrigger 74 and strut 76 is generally that of an inverted right-angled triangle in which the strut 76 is the hypotenuse.
The sets of uprights 72, outriggers 74 and struts 76 are arranged in two pairs, each pair being joined by a respective longitudinal beam 78. Each beam 78 extends between the junctions of the outriggers 74 and struts 76 of the associated pair. A gap between the beams 78 of the respective pairs defines a slot 80 between the innermost two of the outriggers 74, that slot 80 being open at its outboard end.
The outriggers 74 support a carriage 82 in alignment with the slot 80. The carriage 82 will now be described in detail with reference to
As will be explained, the socket 88 is adapted to receive and engage elements of the connectors 30, 32, 34 used to connect the SSW section 18 of a mooring line 12 being deployed. As will also be explained, the clamp 90 is adapted to receive and engage chain 16, 20 used at the bottom and top of the mooring line 12. Via either the socket 88 or the clamp 90 as appropriate, the carriage 82 and the platform 58 are capable of supporting and transferring the load of the mooring line 12 to minimise intervention from cranes or winches on the lay barge 36.
The clamp 90 comprises a circular-section tubular collar 92 upstanding from the platen 86, which surrounds a hole penetrating the platen 86. Flaps 94 are pivotably mounted to the top of the collar 92. The flaps 94 are shown in a closed operational position in
The features and operation of the platen 86, socket 88 and clamp 90 will be described in more detail below. Meanwhile, it should be noted from
By virtue of fore-and-aft longitudinal movement of the platform 58 with respect to the lay barge 36 and inboard-and-outboard lateral movement of the carriage 82 with respect to the platform 56, the carriage 82 may be moved horizontally to any location in a rectangular area situated outboard of the hull 60 of the lay barge 36 and generally below the deployment winch 52. That area encompasses, and extends beyond, the region below the deployment winch 52. Thus, the carriage 82 may be moved for the socket 88 to receive SSW 18 deployed by the drum 54 of the deployment winch 52 and for the clamp 90 to receive chain 16, 20 deployed by the gypsy wheel 56 of the deployment winch 52. The carriage 82 may also be moved for the socket 88 to receive elements of the connectors 30, 32, 34 used in the mooring line 12, before carrying those elements back to below the location where the SSW 18 emerges from the drum 54 of the deployment winch 52. It will be noted that due to spooling of the SSW 18 on the drum 54, that location will vary as the SSW 18 is deployed.
The socket 88 and the clamp 90 also divide as the platen 86 divides. A respective semi-circular half 88′ of the socket 88 moves with each jaw 86′ such that the circular socket 88 is completed when the jaws 86′ come together. Similarly, a respective semi-circular half 92′ of the collar 92 moves with each jaw 86′ such that the semi-circular collar 92 is completed when the jaws 86′ come together. Also, each half of the collar 92 carries a respective one of the flaps 94.
As mentioned above, the flaps 94 are pivotably mounted to the top of the collar 92. Each flap 94 is hinged about a respective generally horizontal axis, the axes being parallel to each other.
When lowered into the closed operational position shown in
A final detail of the carriage 82 is also best shown in
Having now described the lay barge 36 and details of the platform 58 and carriage 82, their operation when installing a mooring line 12 will now be described. The general process is summarised in
Once the upper section 26 of the ground chain 16 has been inserted into the gypsy wheel 56 as shown in
The upper section 26 of the ground chain 16 is now ready for deployment overboard into the sea. To enable this, the jaws 86′ of the platen 86 of the carriage 82 are separated to split the socket 88 as shown in
The jaws 86′ have then been brought together to complete the collar 92 around the chain. The collar 92 may then be pivoted if necessary to align the chain-engaging formations 110, 112 of the flaps 94 with the orientation of the chain links, whereupon the flaps 94 are lowered to engage the chain links. The link 122 at the upper end of the chain is received by the cup 112 and the penultimate link 124 of the chain is received by the holes 110. The horizontal plate defined by the cooperating lowered flaps 94 now bears the full load of the upper section 26 of the ground chain 16, meaning that the main crane 48 is free for other duties.
Via the SSW 18, the deployment winch 52 may now take the load of the deployed upper section 26 of the ground chain 16. This enables the jaws 86′ of the carriage 82 to be opened once more as shown in
Fore-and-aft unspooling movement of the SSW 18 with respect to the deployment winch 52 may be accommodated by moving the platform 58 fore-and-aft to keep the carriage 82 in alignment with the SSW 18 throughout deployment.
To complete the ground chain 16, the male connector element 120 (shown in
The subsea connector 30 may then be detached by an ROV 130 from the suction pile 14 so that the full length of the ground chain 16 can extend freely from the suction pile 14 while its bottom end remains anchored by the connector 28 to the buried side wall of the suction pile 14.
Deployment of the SSW 18 continues until all of the SSW 18 has been paid out from the drum of the deployment winch 52. At that stage, as shown in
Now, the jaws 86′ have been brought together to complete the socket 88 around the SSW 18, whereupon the connector element 128 has been lowered into and engaged with the socket 88 as shown in
When the H-link connector 126 has been engaged with the connector element 128, the platform 58 is moved aft along the rails 62 to move the carriage 82 back into alignment with the gypsy wheel 56 of the deployment winch 52. Here, as shown in
The jaws 86′ have then been brought together to complete the collar 92 around the chain 20. As before, the collar 92 may be pivoted if necessary to align the chain-engaging formations 110, 112 of the flaps 94 (as shown in
As
Referring finally to
Number | Date | Country | Kind |
---|---|---|---|
1015594.3 | Sep 2010 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2011/002574 | 9/15/2011 | WO | 00 | 5/20/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/035432 | 3/22/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3685305 | Lloyd, III | Aug 1972 | A |
20100024706 | Foo et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
1 041 126 | Oct 1958 | DE |
1081268 | Aug 1967 | GB |
1 540 650 | Feb 1979 | GB |
2 439 295 | Dec 2007 | GB |
WO 2004085898 | Oct 2004 | WO |
WO 2006085739 | Aug 2006 | WO |
WO 2008129320 | Oct 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20130230356 A1 | Sep 2013 | US |