A voice over DSL telephone system for a customer premises. The system includes a network interface device having a DSL filter coupling DSL service from a central office to the customer premises wiring and a switch for automatically connecting POTS service from the central office to the customer premises wiring whenever there is no active integrated access device, IAD, connected to the wiring. A detection circuit detects the presence or absence of the IAD and opens and closes the switch accordingly. Both DSL and POTS ports of an IAD may then be connected to the same customer premises wiring. Telephone sets are coupled to the customer premises wiring through low pass filters which block DSL frequencies.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
REFERENCE TO A MICROFICHE APPENDIX
Not Applicable.
BACKGROUND OF THE INVENTION
The present invention relates to customer premises telecommunications systems and more particularly to a system which uses existing customer premises wiring for both POTS and DSL services without interference with local exchange carrier POTS service.
The common telephone service provided to customer premises, including homes and businesses, is analog service provided over copper wires usually referred to as twisted pair. This service is referred to as POTS, or plain old telephone system, service. It is sometimes considered to be synonymous with the public switched telephone network, PSTN. Most of the PSTN now carries signals digitally. However, POTS service from the local exchange carrier, LEC, central office, CO, to customer premises is analog and carried over copper wire. In addition to voice, the tip and ring signals and power to operate telephone sets in the customer premises are carried over the copper wires. An advantage of this system is that the telephone system does not depend on having power available at the customer premises. The CO normally uses standard grid power to operate and has emergency power backup systems which keep the telephone system operating in emergency situations.
Digital subscriber loops or lines, DSL, were developed to provide digital data service over the same twisted pair lines which are used for POTS. This type of service has great advantage when customers connect computers to the Internet or other networks from their homes or small business premises. Both POTS service and DSL service can be provided over the same copper wires so that no additional expense of running extra lines for DSL is required. POTS service operates at frequencies below 4 KHz while DSL operates at frequencies above 4 KHz up to several MHz. It is therefore a simple matter to separate the signals by frequency filters.
As the DSL service has become more available, it is becoming common to provide voice over DSL, VoDSL, service. In this type of service, the analog telephones in a customer premises are connected to a device, e.g. a VoDSL Integrated Access Device (IAD), which converts the analog telephone signals to digital signals and sends them to the CO over a DSL connection. An example of an IAD is the CPE, customer premises equipment, described in U.S. Pat. No. 6,272,209 issued on Aug. 7, 2001. This arrangement has a number of advantages. For example, a number of separate telephone voice signals can be transmitted simultaneously over one DSL connection. Data signals may also be transmitted over the DSL connection at the same time. There is no need to run additional twisted pairs when a customer wants additional telephones or additional computer connections. This arrangement effectively extends the PSTN digital system past the CO and into the customer premises.
VoDSL systems must have a source of electrical power. It has not proven practical to provide power from the CO as is done for POTS service. The power requirements are too great. As a result, the systems use power from the customer premises. For emergency purposes, the systems may have batteries for backup when the AC power is lost. However, such systems must be maintained by the customer to be sure that the backup batteries are charged and are replaced at regular intervals. In any case, backup batteries have a limited amount of power available and will run down after a long outage of AC power.
As VoDSL systems become more common, more customers want to perform their own installation. This requires that the system be easy and simple to install. Such systems should be designed to plug into existing wiring to the extent possible. Running new wiring in a customer premises requires a major effort which most customers would not want to undertake. It is also desirable that an IAD be located close to a customer's personal computer, since they often have a network connection directly to the computer. However, in existing systems IADs must be connected between the copper wires entering the premises and the internal wires connected to the telephone sets. This normally requires breaking or interrupting the wiring at or near a location on the exterior of the customer premises. The analog signals between the IAD and the telephone sets in the customer premises must be isolated from the POTS service connection to the CO.
It would be desirable to have a voice over DSL system which is simple to install, does not require additional wiring in the customer premises and which provides telephone service when the VoDSL system loses power.
SUMMARY OF THE INVENTION
A voice over DSL system according to the present invention includes an improved network interface device, conventional customer premises wiring, and an integrated access device having both DSL and POTS ports coupled to the customer premises wiring. The improved network interface device includes a filter which couples DSL frequencies across the network interface device at all times and an automatic switch which opens when an integrated access device is operating to isolate POTS service in the customer premises from POTS service in a local exchange carrier central office.
In one embodiment, the invention includes a DSL blocking filter between a telephone set and its connection to the customer premises telephone wiring.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a block diagram of prior art interconnection of voice over DSL service from a local exchange carrier to a customer premises telecommunications system.
FIG. 2
is a block diagram of the interconnection of voice over DSL service from a local exchange carrier to a customer premises telecommunications system according to the present invention.
FIG. 3
is schematic diagram of a network interface device according to the present invention.
FIG. 4
is a block diagram of the interconnection of an integrated access device connection to telephone wiring carrying both POTS and DSL signals.
DETAILED DESCRIPTION OF EMBODIMENTS
With reference to FIG. 1
, there is illustrated a conventional or prior art system for providing VoDSL service to a customer premises indicated by the dotted line box 10
. A local exchange carrier, LEC, central office, CO, 12
contains the equipment for providing both POTS service and DSL service. These services may be connected to the customer premises 10
over a pair of copper wires 14
. The wires 14
are terminated at a network interface device, NID, 16
which is normally located on an outer surface, e.g. wall, of the customer premises 10
. The NID 16
normally identifies the point of demarcation between telephone company owned equipment and customer owned equipment inside the premises 10
.
The NID 16
couples the signals from wires 14
to telephone wiring 18
and 20
within the premises 10
. In a system having only POTS service, the wiring 18
and 20
may be directly connected as indicated by dotted lines 22
.
An integrated access device, IAD, 24
has a DSL port 26
connected by wires 28
to the telephone wiring 18
leading from the NID 16
. IAD 24
has a POTS port 30
connected by wiring 32
to the telephone wiring 20
. IAD 24
may also have a network port 34
connected by wiring 36
to a computer 38
. The IAD 24
is connected to standard AC power through a power cord 40
. A number of conventional telephone sets 42
are connected to the telephone wiring 20
. An example of an integrated access device which provides both VoDSL service and network connections for computers is described in co-pending U.S. Pat. No. 6,272,558, entitled “Multi-Services Communications Device,” issued Aug. 7, 2001, which is incorporated by reference herein in its entirety.
In the system of FIG. 1
, the DSL service from CO 12
is connected through wiring 14
, 18
and 28
and through NID 16
to the DSL port 26
of IAD 24
. The IAD 24
converts high frequency digital signals at port 26
to low frequency analog POTS signals at port 30
. The IAD also provides all of the power, tip and ring, etc. signals required for POTS service at port 30
. These POTS signals are coupled through wiring 32
and 20
to the telephone sets 42
which function in the same manner as if the POTS signals came from the CO 12
.
As indicated above, the telephone wiring 18
and 20
can be directly connected if only POTS service is provided to the residence 10
. During construction of a residence, the telephone wiring is normally run from the location of NID 16
to most of the rooms in the residence. The local exchange carrier will normally install the NID 16
on the exterior of the residence 10
and make a connection to the wiring 18
. When the owner of the premises requests DSL service, the telephone wiring 18
must be cut close to the NID to isolate the wiring 20
from the POTS service from the CO 12
as indicated by dashed lines 22
. If the IAD can be located near the NID 16
, then wiring 28
and 32
can be fairly short. But, quite often the interior premises location corresponding to the exterior location of NID 16
is not a desirable location for the IAD 24
. For example, the NID is often placed outside a garage which would not provide appropriate temperature and humidity conditions. If the NID is outside of most other rooms in the house, the owner does not want the IAD mounted on the interior wall for aesthetic reasons. In addition, a network cable 36
is often required to be run from the IAD 24
to a computer 38
. The usual compromise is to place the IAD near the computer 38
, since it may look like another piece of computer equipment, and then run two long pairs of wires 28
and 32
to intercept the incoming telephone wiring 18
near the NID 16
.
With reference to FIG. 2
, a system for providing VoDSL service to the premises 10
according to the present invention is illustrated. In FIG. 2
the LEC CO 12
and wiring 14
may be the same as in FIG. 1
. An improved NID 50
is mounted on an exterior wall of premises 10
. The NID is connected to telephone wiring 52
, preferably preinstalled, in the premises 10
. The wiring 52
is normally run to and accessible in each living and work area of the premises 10
. Telephone sets 54
are coupled to the wiring 54
, preferably through DSL blocking low pass filters 56
. Filters 56
may be commercially available devices such as Model FIL-0002-AB sold by 2WIRE, Inc. or equivalent devices.
An IAD 58
may be located anywhere in premises 10
and is connected by a standard telephone plug set 60
to the same wiring 52
as the telephone sets 54
. IAD 58
may have a network connection 62
to a computer 64
. The IAD 58
may be connected to wiring 52
at any accessible point in the premises 10
, i.e. essentially anywhere in the premises 10
and no extra wiring is needed to connect near the NID 50
. Thus, it is convenient to locate IAD 58
near computer 62
and simply plug cable 60
into a nearby telephone jack just like plugging in telephones 54
.
In FIG. 3
, there is provided a schematic diagram of an embodiment of an improved NID 50
. As shown in FIG. 2
, the NID 50
couples signals from the telephone company wiring 14
to the on premises telephone wiring 52
. A high pass filter or DSL pass filter 66
is connected between wiring 14
and wiring 52
. Filter 66
blocks POTS voltages and signals, but allows DSL frequency signals to pass from wiring 14
to wiring 52
at all times.
The NID 50
also provides a switched connection of wiring 14
and wiring 52
through a relay 68
. Relay 68
includes a pair of normally closed contacts 70
and 72
, driven by a relay coil 74
. When no current flows through coil 74
, the contacts 70
and 72
close and couple all signals, including DC voltage and current between wiring 14
and wiring 52
.
When the contacts 70
, 72
are closed, the CO 12
can provide POTS service to telephone sets in premises 10
. However, this would cause a conflict if an IAD 58
is connected to wiring 52
and is powered up. The NID 50
therefore includes an IAD detector 76
for sensing the presence of an active, i.e. powered up, IAD 58
connected to wiring 52
. In this embodiment, the detector is connected in line between switch 70
and one side of on premises wiring 52
. It provides an output 78
to drive the coil 74
of relay 68
. When the detector 76
detects the presence of an active IAD 58
, it drives current through coil 74
to open contacts 70
and 72
and disconnect POTS service from the LEC CO 12
. When the IAD 58
loses power or otherwise fails to provide POTS service, the detector 76
stops driving current through coil 74
so that switches 70
and 72
close and POTS service from CO 12
is reconnected.
There are a number of ways in which the detector 76
may detect the presence of an active IAD 58
. In one embodiment, detector 76
may sense the flow of DC current from wiring 14
to wiring 52
which occurs if the CO 12
is providing POTS service to telephone sets 54
and no active IAD is connected to wiring 52
. If IAD 58
begins providing the DC voltages needed for POTS service, the DC current from CO 12
through detector 76
should drop essentially to zero. When that occurs, the current sensing circuit uses the IAD POTS voltage on lines 52
to drive current through coil 74
causing contacts 70
and 72
to open and stop the POTS connection to CO 12
. If the IAD 58
fails when contacts 70
and 72
are open, the current through coil 74
will stop and the contacts 70
and 72
will return to their normally closed position, restoring POTS service from CO 12
.
It will also be apparent that other means may be used to determine whether IAD 58
is active. For example a voltage detector may be used instead of a current detector. It would also be possible to have a dedicated signal line from IAD to detector 76
. To avoid running extra wires for such dedicated signal line, the IAD 58
could generate a signal, e.g. a fixed frequency tone, on lines 52
when it is active and the detector 76
could detect the signal and switch relay 68
in response. Depending on the type of detection circuitry used, the IAD detector may be connected to standard AC power through a power cord, not shown, and may include a backup battery.
This operation of the NID 50
also permits installation of the IAD by the owner of the premises without wiring changes. The NID 50
may be installed when no VoDSL service is supplied to the premises 10
. Since the NID 50
is located outside the premises 10
, it may be installed without entering the premises and without changing the on premises wiring. With the NID 50
in place, the rest of the system can be installed by plugging cables into standard sockets. The IAD 58
may be plugged into any available telephone jack with a standard connector cable. DSL filters may be installed for each telephone set by unplugging the telephone from its jack and inserting an inline filter such as the one described above.
As shown in FIG. 2
, the IAD 58
is connected to the standard in house wiring 52
for both DSL and POTS service. Since these two services operate at different frequencies, it is a simple matter to make one connection to the IAD and separate the signals internally.
FIG. 4
provides a simple filter arrangement which allows IAD 24
of FIG. 1
to be used in the FIG. 2
embodiment. IAD 24
has separate DSL port 26
and POTS port 30
. In FIG. 4
, a high pass filter 90
is connected to DSL port 26
. A low pass filter 92
is connected to POTS port 30
. The two filters 90
, 92
are connected to a single pair of wires 94
, which may be connected to the in house wiring 52
. The filter 90
allows DSL signals to pass between wires 94
and DSL port 26
, but blocks POTS signals. The filter 92
allows POTS signals to pass between wires 94
and POTS port 30
, but blocks DSL signals.
This arrangement illustrates how the present invention allows the IAD 58
to be located essentially anywhere in premises 10
without modifying the originally installed telephone wiring. The IAD 58
may exchange DSL signals with the CO 12
over the in house wiring 52
. It may simultaneously communicate with the telephones sets 54
in POTS service which operates in a different frequency band. As noted above, it is preferred to use DSL blocking, i.e. low pass, filters 56
for each telephone set 54
. The in house wiring 52
serves as a common bus for both frequency bands.
While the present invention has been illustrated and described in terms of particular apparatus and methods of use, it is apparent that equivalent parts may be substituted of those shown and other changes can be made within the scope of the present invention as defined by the appended claims.
Claims
1. A customer premises voice over DSL telephone system comprising:a pair of customer premises wires adapted for coupling telephony signals to telephone sets, an integrated access device coupling both DSL and POTS signals to said pair of customer premises wires at the same time, a switch connecting said pair of customer premises wires to a pair of telephone company wires when said integrated access device is not active and disconnecting said pair of customer premises wires from the telephone company wires when said integrated access device is active, and a high pass filter coupling signals between said pair of customer premises wires and the telephone company wires.
2. A customer premises voice over DSL telephone system according to claim 1, further comprising:a telephone set coupled to said pair of customer premises wires.
3. A customer premises voice over DSL telephone system according to claim 2, further comprising:a low pass filter coupling said telephone set to said pair of customer premises wires.
4. A customer premises voice over DSL telephone system according to claim 3, wherein:said low pass filter has a cutoff frequency above the frequency of POTS signals and below the frequency of DSL signals.
5. A customer premises voice over DSL telephone system according to claim 1, wherein said high pass filter has a cutoff frequency above the frequency of POTS signals and below the frequency of DSL signals.
6. A customer premises voice over DSL telephone system according to claim 1, further comprising:a network interface device containing said switch and said high pass filter coupling said pair of customer premises wires to the telephone company wires.
7. A customer premises voice over DSL telephone system according to claim 1, further comprising:a sensing circuit detecting the presence of an active integrated access device connected to said pair of customer premises wires and providing an output causing said switch to open when an active integrated access device is connected to said pair of customer premises wires and to close when an active integrated access device is not connected to said pair of customer premises wires.
8. A customer premises voice over DSL telephone system according to claim 7, wherein:said sensing circuit is a current sensing circuit detecting POTS current flowing from the telephone company wires to said pair of customer premises wires and providing an output causing said switch to close when current is flowing and to open when no current is flowing.
9. A customer premises voice over DSL telephone system according to claim 7, wherein:said switch is part of a relay having a coil coupled to said sensing circuit.
10. A customer premises voice over DSL telephone system according to claim 1, wherein:said integrated access device has a DSL port for coupling DSL signals to and from the telephone company wires and a POTS port for coupling POTS signals to and from said pair of customer premises wires.
11. A customer premises voice over DSL telephone system according to claim 10, further comprising:a high pass filter coupling said DSL port to said pair of customer premises wires, and a low pass filter coupling said POTS port to said pair of customer premises wires.
12. A method for installing voice over DSL service in a customer premises, comprising:coupling a pair of telephone company wires carrying both DSL and POTS signals to a pair of customer premises wires with a high pass filter having a cutoff frequency above the frequency of POTS signals and below the frequency of DSL signals and with a switch which opens automatically when the customer premises includes an active integrated access device coupled to said customer premises telephone wiring and which otherwise closes.
13. A method for installing voice over DSL service in a customer premises according to claim 12, further comprising;coupling an integrated access device to the customer premises wiring.
14. A method for installing voice over DSL service in a customer premises according to claim 13, wherein said integrated access device has a POTS port and a DSL port, further comprising:using a high pass filter to couple said integrated access device DSL port to said pair of customer premises wires, and using a low pass filter to couple said integrated access device POTS port to said pair of customer premises wires.
15. A method for installing voice over DSL service in a customer premises according to claim 12, further comprising:coupling a telephone set to the pair of customer premises wires through a low pass filter.