1. Field of Invention
The present invention pertains to a downhole completion assembly having at least one control line, and particularly to a completion assembly in which the at least one control line has at least one splice.
2. Related Art
It is often desirable to run one or more control lines in, on, or through assemblies to be placed in a well. Control lines include, but are not limited to, hydraulic conduits, electrical line conduits, and fiber optic cables. A control line is generally used to communicate in some manner with one or more tools placed in the well. For example, a packer placed downhole may be set by hydraulic fluid pressure communicated from the surface to an actuator mechanism of the packer. Alternatively, a fiber optic cable may be pumped through a control line and used, for example, to measure the temperature profile of the well, or communicate a command to a tool downhole.
Control lines can be comprised of two or more segments. Those segments are typically (but not always) joined at the surface. Using segments may require the control line to have one or more splice. Once assembled, the control line is typically attached to the tubular or completion assembly being run into the well and the combined tubular or completion assembly and control line are run in the well together.
The present invention provides for a completion assembly having a line slack compensator to provide or remove slack in a control line.
Advantages and other features of the invention will become apparent from the following description, drawings, and claims.
Referring to
Coiled control line section 12 is carried on a mandrel 18. An upper slider sleeve 20 or a lower slider sleeve 22, or both, are also carried on mandrel 18 and engage coils 16 with slots 24. Mandrel 18 may have threads on its outer surface complementary to threads on the inner surfaces of sleeves 20, 22 so sleeves 20, 22 can be axially displaced along mandrel 18 when sleeves 20, 22 are rotated relative to mandrel 18. Alternatively, the outer surface of mandrel 18 and the inner surface of sleeves 20, 22 may be smooth to allow sliding displacement of sleeves 20, 22 along mandrel 18. A protective sleeve 26 covers at least coiled control line section 12 and protects it from damage. Slider sleeves 20, 22 can be releasably fixed to mandrel 18, for example, by set screws. Those set screws or other fixing means are accessed through openings in protective sleeve 26. Guide lines may be provided to assist alignment.
A possible assembly method includes attaching mandrel 18 to a top sub 28. Upper slider sleeve 20 is installed on mandrel 18. Coiled control line section 12 is placed on mandrel 18 and upper slider sleeve 20 is spun down to engage coils 16. Preferably a few turns of coils 16 are positioned above upper slider sleeve 20. The upper portion of straight control line section 14 is joined to the upper portion of coiled control line 12 to allow fluid communication therethrough.
Lower slider sleeve 22 is installed on mandrel 18 and spun onto coiled control line 12 with slots 24 engaging coils 16. Preferably a few turns of coils 16 are positioned below lower slider sleeve 22. Protective sleeve 26 is mounted over coiled control line section 12 and slider sleeves 20, 22, for example, by joining it to top sub 28. Set screws, locking bolts, or other fixing means are passed through openings in protective sleeve 26 and releasably secure slider sleeves 20, 22 to mandrel 18. The lower portion of straight control line 14 is joined to the lower portion of coiled control line 12 to allow fluid communication therethrough. A bottom sub 30 may be joined to the lower end of mandrel 18.
In operation, say to provide slack at the lower end of line slack compensator 10, the set screws (fixing means) holding lower slider sleeve 22 to mandrel 18 are loosened sufficiently to allow lower slider sleeve 22 to be moved downward. As lower slider sleeve 22 moves downward, coils 16 are stretched, producing slack at the lower end of line slack compensator 10. To remove the slack, lower slider sleeve 22 is displaced upward to compress coils 16. The extra coils below lower slider sleeve 22 compensate if the full slack provided is not all returned. Slack at the upper end of line slack compensator 10 is achieved in the same manner using upper slider sleeve 20.
An alternate embodiment of a line slack compensator 100 is shown in
In the embodiment shown, each ring 102 has at least one longitudinal or axially-directed hole 104 running through the sidewall 106 of ring 102, as shown in
Control line 112 is fed through holes 104. When holes 104 of each ring 102 are aligned, slack is provided. While slack is provided, splicing operations may be performed with control line 112. To remove slack, middle ring 102 is turned in either direction, wrapping control line 112 around mandrel 110. Once the desired amount of slack is removed, middle ring 102 can be fixed to mandrel 110. Using more rings 102 will permit management of larger amounts of slack in control line 112.
Although rings 102 are described as having holes 104 therethrough, control line 112 can also be clamped or otherwise secured to ring 102 so as to rotate with ring 102. For example, the embodiment of line slack compensator 10 shown in
Similarly, in
In
Referring to
When assembled and ready to be run into the well, contraction joint 212 is joined to line slack compensator 10, line slack compensator 10 is joined to make-up sub 216, and make-up sub 216 is joined to stinger 218.
An assembly method includes joining stinger 218 and make-up sub 216 and placing that combination in the rotary. In the embodiment shown, a lower free end of fiber optic cable 220 extends from the stinger/make-up sub combination. Contraction joint 212 and line slack compensator 10 are joined and that combination is stabbed or otherwise joined to the stinger/make-up sub combination, preferably without rotation of either combination. An upper free end of fiber optic cable 220 extends from the contraction joint/line slack compensator combination.
The upper and lower free ends of fiber optic cable 220 must be spliced together before assembly 210 can be run into the well. If slack is need, it may be obtained from line slack compensator 10. Once the splice is made, slack is removed by line slack compensator 10. If desired, a splice of fiber optic cable 220 can also be made between contraction joint 212 and line slack compensator 10. Line slack compensator 10 can provide or remove slack at its upper and lower ends.
Line slack compensator 10 is able to provide or remove slack by extension or contraction of various turns of fiber optic cable 220 wrapped around a mandrel 18 in line slack compensator 10. Movement of those loosely wrapped coils allows extension or contraction similar to that of a coil spring.
Make-up sub 216 is a tool well known in the art, and is sometimes referred to as a “quick connect” or “make-up union”. It comprises upper and lower halves with a clutch interface to transmit torque when the two halves are joined. The two halves are stabbed together and the collar (and only the collar) is rotated to secure the two halves together.
Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention.
This application claims the benefit of United States Provisional Application 60/521,767 filed on Jul. 1, 2004.
Number | Date | Country | |
---|---|---|---|
60521767 | Jul 2004 | US |