It is often useful to apply a marking, such as a stripe, to a flat, ground surface, such as a parking lot or roadway. Line stripers are used for painting or otherwise applying lines on pavement or other hard, flat surfaces in parking lots and other locations. Such lines are typically sprayed onto the pavement or other suitable surface using one or more paint spraying guns. Line stripers typically use an internal combustion engine that operably drives a paint pump in order to convey paint or other suitable fluid to the one or more paint spraying guns in order to atomize the paint and direct it to the surface for which lines are desired. In some implementations, the internal combustion engine may also drive a hydraulic fluid pump that provides high pressure hydraulic fluid. This high pressure hydraulic fluid can be used for any number of purposes. In one example, the hydraulic fluid is used to drive a hydraulic paint pump in order to convey the pressurized paint to the one or more spray guns. In this way, hydraulic fluid bears against a hydraulic piston thereby moving the piston. The piston is coupled to a connecting rod that is also coupled to a paint pump piston that is used to pump the paint or other suitable fluid from a container to the one or more paint spray guns at high pressure
Outdoor ground surfaces, such as parking lots, are exposed to weather and other elements during their lifetime. For example, they may be periodically exposed to salt or sand during winter months. Removing weather-related and other debris from a surface prior to an application of material to that surface is important to ensure the application lasts.
A line striper is disclosed. The line striper comprises a material deployment system configured to receive material from a material source and deliver the received material to a deployment mechanism. The deployment mechanism is configured to apply the received material to a surface. The line striper also includes a mechanical debris removal system that, when actuated, moves along an application path ahead of the deployment mechanism such that debris is dislodged from the surface. The mechanical debris removal system includes a contact mechanism that dislodges debris from the surface.
Weathering, and other wear conditions, present obstacles to operators of line stripers prior to an application of the stripe to the surface. Line stripers may be configured to dispense a variety of materials including, but not limited to, paint and other colored solutions, resins, acrylics, slurries including some solid and some liquid material, and other appropriate fluids. For the sake of simplicity, but not by limitation, the example of paint is used to describe some embodiments herein. However, other embodiments may be configured to dispense other materials for adherence to a desired surface.
Prior to applying a layer of paint to an asphalt, concrete, or other surface, built-up debris must be removed from the surface in advance such that the paint, when applied, adheres directly to the surface, and not to the accumulated debris. Paint adhering to accumulated debris may flake off or otherwise be prematurely removed. Accumulated debris may comprise, for example, dirt, sand, trash or other debris, dissolved material such as salt applied in advance of, or following, a winter storm.
Paint, or another suitable lining material, is often applied to a hard surface using a vehicle configured to push the line striper. For example, many parking lots, or other appropriate surfaces, in addition to a colored stripe, may also have a reflective coating applied in order to ensure that the stripe is visible at night. Additionally, some material may be applied such that it produces a textured zone on the hard surface, such texture solutions are envisioned in at least some embodiments.
When applying stripes, for example to a parking lot or other hard surface, an assistant will generally walk ahead of the line striper and sweep the surface to remove accumulated dirt and debris from a desired material application zone on the surface. Debris may interfere with the applied material adhering directly to the surface. Such debris may reduce the quality of the applied stripe as debris interferes with the adherence of the material to the surface. In the event that an assistant is not available, the operator of the line striper may be required to first sweep the area prior to striping, and then apply the desired stripes. In both instances, significant additional effort is required before a desired material, such as paint, can be applied to the hard surface. Additionally, such a process introduces significant delay between the debris removal and the paint application.
Some additional problems associated with a separate human operator sweeping the area prior to a line striping operation include, for example, a lack of consistently applied force necessary to remove debris from an intended material application zone on the surface.
In accordance with embodiments described here, a line striper includes, or is associated with, a debris removal system. The debris removal system, in one embodiment, is configured to consistently apply sufficient friction to a surface to remove debris in a material application zone. The application of a consistent, and sufficient, force to the surface may improve debris removal, and may improve the lifetime of a subsequent paint application. Additionally, another problem with using a human operator to sweep the area prior to a line striping operation is that surfaces for line striping operations are often in an outdoor environment, subject to weather and other conditions. Therefore, it is possible that debris may accumulate between a sweeping operation and a subsequent striping application, for example blown into an intended application zone by wind.
Line striper 100 also includes a material deployment system 120 that receives material for application from a material source, such as material source 122 illustrated in
Material deployment system 120, when actuated by actuator 126, provides material from source 122 to a material deployment mechanism 128. In the illustrated example, the mechanism for transferring material from material source 122 to material deployment mechanism 126 includes one or more pumps 124. Pump 124 is configured to pressurize a fluid material before providing it to material deployment mechanism 128 for a given spraying application. In one embodiment, material is provided to material deployment mechanism 128 at a desired application pressure. Material deployment mechanism 128 may include one or more spray guns, or spray nozzles, that provide the material in a fan-shaped pattern, or other appropriate disbursement pattern. In at least one embodiment, the dispersed material is partially aerosolized, such that it is dispensed by material deployment mechanism 128 as a series of tiny atomized droplets. Pump 124 may be a piston pump, or any other suitable device.
Controller 102 may be coupled to one or more movement mechanisms 106. In one embodiment, movement mechanism 106 comprises one or more wheels configured to allow for forward and backward movement of line striper 100, in one embodiment. Movement mechanism(s) 106 may be configured to allow for the line striper 100 to turn, for example to the right or to the left such that non-linear material disbursement patterns can be achieved.
In one embodiment, controller 102 is configured to control operation of a propulsion system, for example an internal combustion engine driving operation of line striper 100. In another embodiment, controller 102 comprises control over one or more subsystems of line striper 100, for example movement mechanism 106, material deployment system 120, debris removal system 140 (discussed below), or another subsystem.
Line striper 100 may include a wheeled cart, configured to move forward with the application of at least some force by an operator. In another embodiment, when actuated, line striper 100 is self-propelled. Line striper 100 may include a seat such that an operator can actuate operation, and movement, of line striper 100 in a seated position.
Line striper 100 comprises a debris removal system 140 configured to contact a surface and remove debris located in a material application zone ahead of line striper 100. In one embodiment, debris removal system 140 operates, at least in part, by applying friction forces to the surface in order to dislodge debris from the application zone. In another embodiment, debris removal system 140 operates by applying a vacuum force sufficient to dislodge debris. In a further embodiment, debris removal system 140 operates by blowing air, or another gaseous material, sufficient to dislodge debris. In one embodiment, a combination of applied forces operate in concert to dislodge and remove debris.
Debris removal system 140 is configured to remove debris just ahead of material deployment system 120, for example, debris in a spray path of material deployment system 120. In one embodiment, debris removal system 140 is physically attached to line striper 100. In another embodiment, debris removal system 140 is coupled to material deployment system 120 such that it operates in the path of, but is separate from, material deployment system 120. Debris removal system 140 and material deployment system 120 may be coupled such that operation of one system triggers actuation of the other system. In another embodiment, debris removal system 140 and material deployment system 120 may operate independently, requiring separate actuation by an operator of line striper 100.
Debris removal system 140 comprises actuator 142 which is configured, when actuated, to urge contact mechanism 140 from a storage configuration to a deployed configuration. In the deployed configuration, contact mechanism 140 contacts the surface, where the contact is sufficient to dislodge debris from an application zone on the surface in anticipation of a material application. Actuation may comprise, in one embodiment, physical movement of contact mechanism 140, for example rotational movement or vertical movement.
Debris removal system 140 also includes movement mechanism 146 configured to increase friction between contact mechanism 144 and the surface, for example by causing movement of contact mechanism 144 against the ground. Movement mechanism 146 may rotate contact mechanism 144, in one embodiment. In another embodiment, movement mechanism 146 is configured to cause contact mechanism 144 to rapidly move back and forth, or vibrate, when in contact with the surface. In another embodiment, movement mechanism 146 moves contact mechanism 144 back and forth a plurality of times over a surface in order to dislodge debris through applied friction.
Debris removal system 140 comprises a removal mechanism 148. Removal mechanism 148 may include an air compressor configured to deliver compressed air sufficient to force collected debris out of a material application zone. In another embodiment, removal mechanism 148 may include a blower configured to blow air toward the collected debris such that the collected debris is scattered out of the application zone ahead of material deployment mechanism 128. In one embodiment, removal mechanism 148 comprises at least a partial vacuum applied, such that dislodged debris is either collected within a debris receptacle, or removed from the striping application area, for example by a discharge or other appropriate removal mechanism.
Debris removal system 140 is actuated by actuator 142 into, and out of, a deployed position. In at least one embodiment, it may be desired for debris removal system 140 to be removed out of a deployed position ahead of a line striper 100, for example if line striper 100 is approaching a curb, debris removal system 140 may need to be moved out of the way to avoid a collision with the curb, and potential damage to debris removal system 140. In one embodiment, actuator 142 rotates debris removal system 140 between a deployed and a storage position. The storage position, for example, comprises debris removal system 140 in a non-contact position with the surface. In one embodiment, the storage position comprises debris removal system 140 in a different physical orientation with respect to the material deployment system 120. In one embodiment, rotation between a deployed position and a storage position comprises a rotation of at least 90°.
Actuator 142 is configured to actuate debris removal system 140 into a locked position, for example such that debris removal system 140 can be locked into a deployed position, a storage position, and/or a position intermediate deployed and storage positions. A locked deployed position can be used to ensure that sufficient force is applied to contact mechanism 144 to dislodge anticipated accumulated debris. Actuator 142 is coupled to controller 102, such that actuation is triggered based on a received command, for example, input through user interface 104. In one embodiment, actuator 142 operates with at least partial autonomy, such that it is configured to automatically move contact mechanism 144 between deployed and storage positions, for example, based on sensed debris or an anticipated collision. Partial autonomy may be governed, at least in part, by received indications from a sensor located near the front of line striper 100. The sensor may be configured to sense debris or other objects directly in front of an operational area of debris removal system 140.
Debris contact mechanism 144 includes, in one embodiment, a circular brush with a plurality of bristles. The brush 144 rotates such that bristles, or other dislodging mechanism, engage the hard surface. In one embodiment, brush 144 rotates in a clockwise direction. In another embodiment, brush 144 operates in a counterclockwise direction. Brush 144 may include metal bristles, or any other suitably abrasive structures. The bristles, or other suitable structures, are sufficiently rigid to provide adequate abrasion. In one embodiment, debris removal system 140 comprises a brush 144 composed of a plurality of bristles configured to maintain substantially constant contact with the hard surface.
Line striper 200 comprises an elongate frame 202 configured to support one or more spraying guns, for example guns 204 and 206 illustrated in
Frame 202 is supported, in one embodiment, by wheels 222. In one embodiment, frame 202 is also supported by an omnidirectional caster wheel 224. In one embodiment, wheels 222 may be driven by power generated from internal combustion engine 208 directly, in one embodiment. In another embodiment, wheels 222 are driven by power generated from internal combustion engine 208 indirectly, via actuator 210. Additionally, in one embodiment, line striper 200 comprises a seat for an operator (not shown) configured to allow the operator to sit in or on line striper 200 while a propulsion mechanism, or separate propulsion vehicle, urges line striper 200 along a desired path.
Line striper 200 includes a deployable sweeper system 250. In one embodiment, sweeper system 250 comprises a circular brush 252 configured to rotate in a direction, for example a direction indicated by arrow 254. Causing brush 252 to rotate in direction 254, in one embodiment, forces dirt and other debris to be dislodged just ahead of sweeper system 250. Brush 252 may be urged to rotate in accordance with any suitable technique. In one embodiment, forward movement of line striper 200 causes rotation of brush 252. In one embodiment, rotation of brush 252 is driven by a motor, for example an electric motor, a hydraulic motor, or another appropriate driving mechanism. In one embodiment, for example that shown in
Deployable sweeper system 250, in one embodiment, is supported by one or more arms, for example arms 260 and 262 illustrated in
While some embodiments of the present invention generally comprise a user actuable control that allows the user to deploy and store sweeper system 250, other embodiments comprise one or more proximity sensors to detect the approach of an object. The use of a sensor-based detection mechanism may allow for the line striper to receive a conveyed indication of an approaching object, such that a controller, or other suitable device, actuates hydraulic actuator 270 in order to move sweeper system 250 into and out of a deployed position. In one embodiment, actuation comprises a solenoid automatically engaging hydraulic actuator 270.
A proximity sensor may also be used to determine that a previously detected object is no longer proximate striper 200, and automatically reengages sweeper system 250 into contact with the material application zone. However, in another embodiment, a sensor may be configured to, upon detection of an approaching object, trigger actuation of sweeper system 250 from a deployment position to a storage position. However, in one embodiment, at least some manual control may be required in order to re-lower sweeper system 250. Manual control may comprise, in one embodiment, an operator indication, for example through a user interface, to redeploy sweeper system 250 into contact with the ground.
Line striper 200, in the embodiment illustrated in
The use of a plurality of sweeper systems 250, with a plurality of brushes 252, may be helpful in the event that the debris to be removed is particularly fine. In an embodiment where multiple sweeper systems 250, or multiple brushes 252 within a single system 250, are deployable, such that each brush 252 may be actuated between deployment and storage positions in unison by coupling each to rod 266. In another embodiment, a plurality of brushes 252 may be actuated between deployment and storage positions independently, such that each brush 252 is paired with an actuator 270 and independently coupled to a rod 266. In one embodiment, a single sweeper system 250 comprises multiple brushes 252, with each brush 252 coupled to an associated proximity sensor, such that each brush 252 may be automatically actuated between deployment and storage positions in order to prevent a collision with a detected object.
Actuator 210 may be configured to actuate sweeper system 250 on a sequence valve such that, in response to the operator actuating an electric switch, for example positioned on control panel 120, a solenoid valve is caused to switch positions. In another embodiment, instead of an electric switch, a hydraulic or other actuator system is deployed. Once actuated, the solenoid valve causes material flow to actuate actuator 270, such that when actuator 270 dead heads or otherwise reaches the end of its throw, the sequence valve switches position and turns on the hydraulic motor, which drives actuation of sweeper system 250. When the operator actuates the electric switch in the opposite direction, in one embodiment, the reverse operation sequence occurs. First, the motor stops turning, then actuation of actuator 270 causes material flow to the circuit to stop. In this way, at least some embodiments of the present invention are configured to cease rotation of brush 252 while sweeper system 250 is in a storage position. This may increase safety to sweeper system 250 and line striper 200, and may also reduce the amount of dust other debris that may be thrown by rotating brush 252.
In block 310, debris is detected. In one embodiment, debris is detected ahead of a material dispensing system on a line striper. Debris may be visually detected by an operator, as indicated in block 312, in one embodiment. Upon detecting debris, the sweeper may be configured to automatically trigger deployment of a debris removal system. In at least one embodiment, some manual control is required to actuate a debris removal system, for example, by an operator flipping a switch, pressing a button, or otherwise entering a command on a user interface or directly actuating the debris removal system.
In block 320, a sweeper system is deployed. Deploying a sweeper system, in one embodiment, comprises moving the sweeper system from a storage position to a deployed position. In another embodiment, deploying the sweeper system comprises actuating movement of the sweeper system, which is configured to maintain a constant position with respect to a frame of the line striper. Actuating a sweeper system between the storage position and the deployed position comprises rotational movement, as indicated in block 322, and/or vertical movement of the sweeper system between the storage position and the deployed position, as indicated in block 324. In one embodiment, a deployed position may comprise the sweeper system in a locked position, as indicated in block 326, such that rotational, and/or vertical movement of the system is reduced, and a substantially constant force can be applied to urge a contact mechanism of the sweeper system into contact with the surface.
In block 330, the sweeper system is actuated. This may include maneuvering a contact mechanism into position with a surface such that debris is dislodged from the surface. In one embodiment, actuating comprises allowing passive movement of the contact mechanism across the surface, as indicated in block 338. In another embodiment, actuation comprises mechanically driving the contact mechanism over an intended material application zone on the surface. Mechanically driving, in one embodiment, comprises causing rotation of the contact mechanism, as indicated in block 332. In one embodiment, the contact mechanism comprises a circular brush configured to rotationally contact the surface. Mechanical driving, in another embodiment, comprises causing the contact mechanism to vibrate against the surface, as indicated in block 334. Mechanical driving, in another embodiment, comprises urging the contact mechanism into contact with the surface such that friction forces dislodged accumulated debris, as indicated in block 336.
In block 340, material is applied to an application zone on a surface, for example by a line striper or other material dispensing vehicle. In one embodiment, the applied material comprises paint. In one embodiment, material is deployed shortly after a sweeper removes debris from a desired application surface, such that a substantially debris-free surface receives the applied material.
In block 350, accumulated debris is removed from a material application zone. The debris can be removed by an applied vacuum configured to pull dislodged debris from the application zone, as indicated in block 352. However, the debris can also be removed by an air source, for example a compressor or a blower configured to push dislodged debris from the application zone, as indicated in block 354.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
The present application is based on and claims the benefit of U.S. Provisional Patent Application Ser. No. 62/111,412 filed Feb. 3, 2015, the content of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62111412 | Feb 2015 | US |