Embodiments of the present invention include linear actuator assemblies, including hydraulic linear actuators and pneumatic linear actuators, along with methods for using the actuators. Several specific details of the invention are set forth in the following detailed description and in
The linear actuator assembly 10 of the illustrated embodiment is configured such that neither the cylinder nor the actuator rod is subjected to welding during the manufacturing and/or assembly process. In other words, none of the components are welded together during the assembly of the linear actuator. Accordingly, the linear actuator assembly can be of non-welded construction. This non-welded construction provides significant benefits. By not welding the components together, the components are not subject to distortion, warping, or other side effects of welding. Thus, the cylinder and/or actuator rod do not require secondary machining, honing, or polishing to correct for the side effects of welding in an effort to maintain proper alignment and operation of the components of the assembly. Post assembly distortion due to retained weld stress is eliminated. The non-welded construction is significantly less labor-intensive, thereby significantly reducing the manufacturing cost of the linear actuator assembly. Other, non-metallic materials can also be employed. This construction can also allow the assembly to be easily and quickly disassembled and/or reassembled as needed for service and maintenance. As discussed in greater detail below, the linear actuator assembly is configured so that it has fewer parts, is much easier to assemble and disassemble, is lighter, has a lower profile, and is easier to maintain and/or repair than a conventional linear actuator assembly. The linear actuator assembly is also configured so that the cylinder and the actuator rod are automatically held together and in alignment upon mounting the assembly via the mounting pins to a structure (e.g., a lift assembly) that will be moved via the actuator assembly. Accordingly, additional components used to hold conventional linear actuator assemblies together are eliminated, thereby reducing the complexity, weight, size, and cost of the linear actuator assembly.
The linear actuator assembly 10 of the illustrated embodiment also includes an aperture 24 that extends through the rearward end of the cylinder and through the end plug substantially perpendicular to the linear actuator's longitudinal axis 32. The aperture pivotably receives a mounting pin 26 (shown in phantom lines) that securely mounts to a portion of the equipment or device onto which the linear actuator assembly is mounted. The opposite end of the linear actuator assembly includes an aperture 28 extending through a front end portion 30 of the actuator rod substantially perpendicular to the linear actuator assembly's longitudinal axis. The aperture in the actuator rod pivotably receives another mounting pin 26 that attaches the front end of the linear actuator assembly to another portion of the equipment or device onto which the linear actuator assembly is mounted. The perpendicular orientation of the apertures 24 and 28 relative to the longitudinal axes of the cylinder and the actuator rod is relatively easy to achieve during the manufacture of the components, thereby substantially avoiding the risk of binding due to misalignment of the cylinder and/or the actuator rod.
In one embodiment illustrated in
The cylinder of the illustrated embodiment is constructed of a machined and polished metal tube capable of withstanding the pressures generated by the driving fluid within the interior area without any substantive or plastic deformation of the tube's cylindrical shape. The cylinder can be machined or otherwise formed to provide a straight, round, and smooth inside surface. As indicated above, the linear actuator assembly is constructed so that none of the actuator's components are welded to the cylinder, thereby avoiding the heat, warping, distortion, or other drawbacks experienced by the prior art. The cylinder of the illustrated embodiment can be made of steel, alloys, or other suitably durable material.
While the above embodiments use a coating impregnated or otherwise applied to the outside of a shaft (e.g., the actuator rod), or the inside of the cylinder, or both, other coating materials, impregnation processes, or materials of the rod can be used to achieve the low friction engagement between a shaft and the cylinder, thereby eliminating the need for additional bearing assemblies. This bearingless linear actuator assembly 10 has a reduced exterior size because a smaller diameter cylinder can be used with the actuator rod, thereby providing a “low profile” linear actuator assembly. Further, since a substantive surface length of rod 12 is always in slideable contact with the inner surface 42 of cylinder 14, as seen in
As best seen in
The front end 44 of the actuator rod includes an aperture 56 that receives a mounting pin (shown in phantom lines) that mounts to the device carrying the linear actuator assembly. The mounting pin allows the actuator rod to pivot relative to the mounting pin and/or the device, so that the actuator rod and the cylinder remain axially aligned as the actuator rod is moved between the extended and retracted positions. In this configuration the front mounting pin has dual functions. The mounting pin acts as a retaining pin that holds the actuator rod in place relative to the device carrying the linear actuator and relative to the cylinder. The mounting pin also acts as a pivot mount that pivotally connects the front of the linear actuator assembly to the device. In one embodiment, the surface defining the aperture 56 in the front end of the actuator rod is coated or otherwise treated with a lubricious material, such as the electroless nickel coating discussed above. In another embodiment, at least a portion of the mounting pin is provided with the lubricious coating that engages the mounting pin to provide the low friction interface between the mounting pin and the actuator rod. This arrangement eliminates the need for front pivot bushings, thereby further reducing the complexity and cost of the linear actuator assembly.
In the illustrated embodiment, an overflow port 62 is provided in the cylinder just rearward of the annular groove. A return tube 64 (shown in phantom lines) can be connected to the overflow port to return any of the leaked hydraulic or other driving fluid back to the fluid reservoir. The return tube and the overflow port help ensure that any fluid that makes its way to the front end 66 of the cylinder is not forced past the seal 60.
The front end of the cylinder also has a bored interior recess 68, and a scraper ring 70 is retained in the recess. The scraper ring has an angled leading edge portion 72 that rides along the outer surface of the actuator rod to scrape off any dirt, debris, or the like that may have gotten onto the rod when it was in the extended or partially extended position. The scraper ring of the illustrated embodiment is constructed of a hard, durable plastic material that will not damage or degrade the outer surface 46 of the actuator rod. Other suitable materials can be used for the scraper ring in other embodiments.
In the illustrated embodiment, the scraper portion includes a scraper edge 80 positioned forward of the seal portion 78. The scraper portion is a hard plastic ring with an inner diameter that corresponds to the outer diameter of the actuator rod. The seal portion is a spring-loaded lip seal biased radially inwardly to sealably engage the outer surface of the actuator rod. Other embodiments may be used. The press-on retaining member of the illustrated embodiment is an annular sheet metal cap that securely retains the scraper portion and seal portion in position such that the seal assembly can be installed on the end of the cylinder in a single manufacturing step. The seal assembly with the press-on retaining member is attached to the outside of the cylinder and holds the seal portion immediately adjacent to the end of the cylinder, thereby avoiding the need for an internal bore or groove machined into the inside surface of the cylinder.
In the illustrated embodiments, the frictional engagement of the external shaft seal assembly's press fit connection is such that welds, additional fastening devices or securing mechanisms are not needed. As a result, the seal assembly can be installed on the cylinder fairly quickly and easily. The seal assembly can also be pulled off of the end of the cylinder for repair or maintenance. A replacement seal can be quickly installed if needed by press fitting it on the exterior of the cylinder, thereby minimizing the amount of time the actuator assembly is out of service. The retaining member of other embodiments can be configured to engage a recess, detent, threads, or other retaining feature provided on the outer surface at the end of the cylinder.
One of the benefits of this seal assembly arrangement is that the seal assembly allows a larger outside diameter seal to be used at the front end of the cylinder without requiring that the cylinder have a thicker wall section to accommodate the seal. In the illustrated embodiment, the seal has a thickness approximately the same (or slightly less than) the thickness of the thin-walled cylinder, thereby maintaining a low profile of the assembly. Other embodiments can use a seal portion having a different thickness. A further benefit of the seal assembly is that it mounts to an external housing feature, so the entire assembly, or portions of the assembly, can be replaced quickly and easily without having to disassemble any other portion of the linear actuator. Another benefit is that the external shaft seal assembly saves space and reduces the weight of the components to which it is affixed.
The external shaft seal assembly is described in connection with the cylinder of the linear actuator assembly. The seal assembly can also be connected to other structures to create a substantially fluid tight seal against a shaft. As an example, the seal assembly with the seal portion and the retaining member can be used with bearing assemblies, pumps, motors, gear boxes, rods, cylinders or other shaft structures. The seal assembly attaches to the exterior of a structure and securely holds the seal portion (and scraper portion if provided) immediately adjacent to the end of the structure and in engagement with the shaft. Accordingly, a wide range of seal portions could be used without requiring a bore or internal groove within the inside surface of the structure. Accordingly, the structure and shaft assembly can have a lower profile (e.g. a reduced outer diameter) because the wall thickness of the structure does not have to accommodate the internal bore or groove.
The end plug has an aperture 98 coaxially aligned with an aperture 100 of substantially the same size formed in the cylinder. In the illustrated embodiment, the end plug is securely retained in the cylinder by the friction fit and then by the mounting pin that extends therethrough. No additional structures, fasteners, or securing devices are needed to retain the end plug in position in the cylinder. This configuration of the end plug with the cylinder and the mounting pin has a reduced number of parts, is lighter weight, and is easier and faster to assemble, thereby reducing the manufacturing cost of the linear actuator assembly.
In this arrangement, the rear mounting pin has dual functions. The mounting pin acts as a retaining pin that holds the end plug in place within the cylinder. The retaining pin function also holds the rear end portion of the cylinder in place relative to the actuator rod. The mounting pin also acts as a pivot mount that pivotally connects the rear of the linear actuator assembly to the device carrying the linear actuator assembly. This arrangement eliminates the need to weld the end plug into place. Accordingly, the cylinder is not subjected to welding and the distortion or warping that can be caused by the heat of welding thereby eliminating the need for re-machining, honing, polishing and other post welding processes to compensate for residual induced stresses. This arrangement also permits easy and complete disassembly and reassembly for service or maintenance.
The arrangement of the mounting pins with the linear actuator assembly also acts to operatively hold the cylinder and the actuator rod in position and together when they are mounted on the device carrying the linear actuator assembly. When the mounting pins are removed, the actuator rod and cylinder can be pulled apart from each other. The other components of the linear actuator can then be accessed, disassembled, removed, or replaced.
The aligned apertures 98 and 100 pivotably receive a mounting pin 26 (shown in phantom lines) to allow the rear end portion of the linear actuator assembly to pivot relative to the device carrying the linear actuator assembly. The interior surface of the end plug defining the aperture can be coated with a lubricious material to facilitate the pivoting movement of the mounting pin as the actuator rod moves between the extended and retracted positions. In yet another embodiment, the mounting pin can be provided with a lubricious material or coating thereon so as to provide a low friction interface between the end plug and the mounting pin. In another embodiment, both the end plug and the mounting pin can be provided with the lubricious material or coating. This configuration eliminates the need for rear cylinder bushings while providing a corrosion resistant, low friction interface. Accordingly, the linear actuator assembly has fewer parts, is less complex, easier to assemble and less expensive to manufacture than the prior art.
As best seen in
The fluid chamber 108 is in fluid communication with a hydraulic or pneumatic power source via a passageway 110 extending through the end plug. The end plug contains valves in the passageway that control fluid flow into or out of the fluid chamber 108 (
In the illustrated embodiment, the first portion of the passageway is aligned with apertures in the cylinder and includes a connection port 116 that removably and sealably retains a connection fitting 118. The connection fitting is coupled to a fluid line 120 that carries the fluid to and from a power source (
In the illustrated embodiment, the valve assembly is a solenoid valve assembly, although other valve assemblies could be used in other embodiments. The lower portion of the valve assembly of the illustrated embodiment has external threads that engage internal threads within the end plug. Accordingly, the valve assembly can be easily and quickly attached to the cylinder and the end plug, thereby reducing the manufacturing cost of the linear actuator assembly.
As indicated above, the illustrated actuator is a ram-type actuator, wherein the fluid is driven into the fluid chamber 108 through the passageway 110 in the end plug, and the fluid drives the actuator rod forwardly toward the extended position. The actuator rod returns under the force of gravity along a return stroke back toward the retracted position, so long as the valve assembly allows for the reverse flow of the hydraulic fluid back through the connection fitting and the fluid line. The speed of the actuator rod on the return stroke is limited by a restrictor valve assembly 134 positioned within the second portion of the passageway in the end plug. The restrictor valve assembly allows the full flow into the fluid chamber, while restricting the flow of fluid out of the fluid chamber, thereby restricting the speed at which the actuator rod can return to the retracted position.
The restrictor valve assembly illustrated in
The poppet of the illustrated embodiment has a maximum diameter slightly less than the inner diameter of the valve chamber (
Referring back to
In the illustrated embodiment, the valves 902 are coupled to a fluid supply line 904 and a fluid return line 906, both of which are coupled to a remote tank 908. In the case where the linear actuator is a pneumatic device, line 904 would be coupled to a compressed air power source, and line 906 would be coupled to an exhaust. The fluid supply line 904 is connected to an inlet fitting 910 that extends into the end plug and sealably engages a first portion 914 of a valve housing 912 (
As best seen in
The end plug 900 with the valves 902 contained therein is removable as a unit from the rear end portion of the cylinder. This arrangement of the valves in the end plug greatly aids in system troubleshooting, because each cylinder contains its own controls. If any of the valves need maintenance or replacement, the fluid supply and return lines 904 and 906 can be disconnected and the end plug assembly with the end plug and integral control valves can be removed as a unit and replaced with a new or different end plug assembly. This replacement of the end plug results in very little downtime for the vehicle, and the replacement process is not labor-intensive. The removed end plug assembly can then be serviced in due course without having to keep the vehicle out of service.
Another benefit of having the control valves in the end plug is that an operator can quickly and easily troubleshoot and diagnose a situation if a problem occurs with a linear actuator assembly on a vehicle having multiple linear actuator assemblies. Prior art systems often use a complex valve manifold located remote from the conventional linear actuators, and the manifold contains all the valves that control the linear actuators. If any of the multiple linear actuators malfunction, the diagnosis process can be very time-consuming, complex, and labor-intensive. The arrangement in the current embodiments with the end plug and integral control valves avoids the diagnosis complexities because the manifold is eliminated and all of the valves for each linear actuator are contained in that assembly's end plug. Any problem with a linear actuator's valves can be diagnosed by going directly to the linear actuator assembly at issue and troubleshooting the problem for that particular linear actuator.
The cylinder and the actuator rod have substantially the same construction as described above except that the cylinder's inner diameter is larger than the outer diameter of the actuator rod. As best seen in
The linear actuator assembly has an end plug 170 that extends into the rear end portion of the cylinder similar to the end plug discussed above. The end plug 170 includes an annular groove 172 that contains a seal 174 that prevents the pressurized fluid within the rear fluid chamber from passing between the cylinder and the end plug. The seal 174 can be a unit pressed into the annular groove before the end plug is inserted into the cylinder, or the seal can be a “formed-in-place” seal injected or otherwise disposed into the annular groove after the end plug is positioned in the cylinder, as discussed above.
The end plug 170 of the illustrated embodiment includes a protruding connection portion 176 that extends beyond the rear end portion of the cylinder. The protruding portion has an aperture 178 that pivotably receives the mounting pin 26 (shown in phantom lines in
The linear actuator assembly of the illustrated embodiment includes a front end cap 181 attached to the exterior of the cylinder's forward portion 182, and a front gland 180 positioned in the interior area at the cylinder's forward portion 182. The end cap acts as a retaining device to contain the front gland in the cylinder. The end cap 181 of the illustrated embodiment has internal threads 183 (
The front gland 180 has an outer diameter that corresponds with the inner diameter of the cylinder, such that the front gland can fit into and frictionally engage the inside surface of the cylinder. The front end of the gland includes a lip 187 that contacts the forward edge of the cylinder and prevents the gland from sliding too far into the cylinder. The end cap securely holds the lip against the forward edge of the cylinder. A rear portion 184 of the front gland has an annular groove 186 that contains a seal 187 therein that sealably engages the inside surface of the cylinder. The seal of the illustrated embodiment is a Parker Hannifin PolyPak™ seal configured to maintain a seal under the fluid pressures within the cylinder, although other embodiments can use different seals. For example, the seal 187 in other embodiments can be a formed-in-place seal, as discussed above.
The front gland 180 has a fluid passageway 188 in fluid communication with an aperture 190 formed in the forward portion of the cylinder. The fluid passageway and the aperture are in fluid communication with the front fluid annulus chamber 191 and positioned to allow the driving fluid to move into or out of the forward fluid chamber 171.
In one embodiment, not shown, a front portion of the front gland includes an annular groove containing a seal that sealably engages the inner surface of the cylinder. Forward of the seal is a retention ring that securely engages the front gland and a retaining groove formed in the inner surface of the cylinder. The retention ring locks the front gland in position within the cylinder and prevents axial movement of the gland during operation of the linear actuator assembly.
The actuator rod extends through and is slideably disposed through an elongated hole 196 in the front gland. The elongated hole has an inner diameter that corresponds with the outside diameter of the actuator rod such that the outer surface of the actuator rod slideably engages the surface of the front gland defining the elongated hole. The actuator rod of the illustrated embodiment is provided with a lubricious surface (such as a lubricious material discussed above) that provides a low-friction engagement between the actuator rod and the front gland. The lubricious surface of the actuator rod acts as a low-friction bearing surface that supports the actuator rod during movement between the extended and retracted positions. In another embodiment, the front gland can be provided with a lubricious coating or the like that engages the actuator rod sliding through the front gland. This arrangement with the coating of lubricious material on the surface of the actuator rod and/or the inner surface of the gland eliminates the need for a front gland bushing for dual direction cylinders. Accordingly, the linear actuator assembly of the illustrated embodiment has fewer parts, is less complex, is easier to assemble, has a lower profile, is lighter weight, is corrosion-resistant, and is less expensive to manufacture than the prior art.
The front portion of the gland has an annular groove 200 extending around the elongated hole 196. A seal 202 is contained in the annular groove and sealably and slideably engages the actuator rod 162 and prevents fluid from exiting the forward fluid chamber through the elongated hole 196. The end cap contains a scraper assembly 206 that engages the surface of the actuator rod during movement between the extended and retracted positions.
The actuator rod has a forward portion 208 that extends forwardly out of the front gland and is exterior of the cylinder. In one embodiment (not shown in
As best seen in
The pin of the illustrated embodiment is press fit into the actuator rod so the pin does not move relative to the actuator rod. The holes in the self-aligning coupler, however, have a slightly larger diameter than the pin, so the self-aligning coupler can pivot about the pin in at least one plane relative to the end of the actuator rod. As seen in
The self-aligning coupler includes an aperture 222 forward of the receiving pocket that pivotally receives the mounting pin 26 (shown in phantom lines) that connects to the device carrying the linear actuator assembly. The self-aligning coupler interconnects the actuator rod and the mounting pin such that the coupler will allow for some pivotal motion of the coupler relative to the mounting pin during operation of the linear actuator assembly. The self-aligning coupler requires less space than conventional alignment devices at least in part because the relative motion is between the coupler and the actuator rod in multiple planes. Accordingly, the end of the actuator rod effectively becomes part of the self-aligning coupling arrangement. This orientation and movement of the self-aligning coupler helps maintain axial alignment of the cylinder and the actuator rod, thereby alleviating binding issues associated with pivot mounts rigidly affixed to the actuator rod. Accordingly, the configuration of the self-aligning coupler prevents and/or reduces stress, excessive wear, and poor performance experienced by conventional linear actuators because of misalignment of the components during assembly or installation. Also, the configuration of the self-aligning coupler of the illustrated embodiment is uncomplicated, requires fewer parts, and is less expensive than prior art alignment systems. The resulting linear actuator assembly is a simple construction that does not sacrifice performance to achieve the simpler and less expensive linear actuator.
The cylinder of the illustrated embodiment also includes an annular groove 232 formed adjacent to a mating groove 234 in the front gland when the front gland is positioned in the front end portion of the cylinder. A plurality of injection apertures 228 are in communication with the mating annular grooves. Sealing material, such as an uncured thermal plastic material is pressure injected through the injection apertures to fill the space defined by the mating grooves 232 and 234, thereby forming a seal 236 between the front gland and the cylinder. A similar configuration for forming other seals can be provided in other embodiments by incorporating grooves in the inner surface of the cylinder with grooves in the front gland or the end plug and dispensing uncured material, such as thermal plastic or other material, therein and allowing the material to cure so as to form the seal that adheres to all contacted surfaces.
When cured, the seal forms a permanent seal that crosses over the annular interface between the inner surface of the cylinder and outer surface of the end plug or front gland or other member. The cured material can act to resist movement of the end plug and/or the front gland within the cylinder. The resulting formed-in-place seals provide several benefits over conventional seals. For example, the formed-in-place seals can be formed at a lower cost than conventional seals. In static applications of the formed-in-place seals, surface finish is not a factor for mating seal surfaces. Also, the formed-in-place seals have a higher degree of reliability compared to conventional seals, particularly in static applications.
The formed-in-place seals of the illustrated embodiment are configured so that they do not irreleaseably lock the end plug or front gland in the cylinder. The end plug or front gland can still be removed from the cylinder, although the seal will be destroyed. The destroyed seal material can be cleaned out of the annular grooves and a replacement seal can be formed in place after the end plug or front gland is inserted back into the cylinder. In another embodiment, the seal is configured to act as a locking device that fixedly retains the end plug or front gland in place in the cylinder. It is noted that in other embodiments, the use of the injected seal material is not limited to static sealing. By matching a singular groove to a release coated straight bore, a dynamic seal can be created between two components with improved performance reliability and lower cost for wide-ranging applications.
In the illustrated embodiment, the linear actuator assemblies 302 have a construction similar to the assemblies discussed above and illustrated in
One of the benefits of this vehicle configuration is that the arrangement of fluid lines in greatly simplified and there is substantially no time delay in moving the actuator rod in response to an operator moving a joystick or other controller. This configuration eliminates the significant time delays that can occur because of the time needed for line pressurization and line swelling that can occur in flexible fluid lines when the valve manifold is remote from the linear actuators. Unlike the prior art, the linear actuator assemblies of the illustrated embodiment with the control valves in the end plug move as soon as the valves are activated in response to the operator's movement of the joystick or other controller. The result is very responsive linear actuator assemblies, thereby providing a very responsive personnel lift or other vehicle or machine.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.