1. Field of the Invention
The present invention relates to a linear actuator.
2. The Prior Art
The explanation of the invention departs from electromechanical linear actuators wherein a spindle with a rotationally fixed spindle nut is driven by a reversible electric motor through a transmission. An activation element in the shape of a piston-like tube is attached to the spindle nut. Alternatively, the activation element may be designed integral with the spindle nut cf., e.g., WO 96/12123 to Koch (Okin). The activation element may be brought to move between two end positions, i.e., a retracted position and an expelled position depending on the direction of rotation of the motor. In the two end positions, the actuator is stopped in that the activation element activates an end stop switch, which signals a control device to interrupt the current for the motor of the actuator. Alternatively, the switches function directly as circuit breakers for the current to the motor.
A common way of arranging end stop switches is to mount these on a rail or a strip-type printed circuit board, which is led into a guide in an outer tube which surrounds the activation element. Examples of this type are known from WO 02/29284 to Linak A/S and U.S. Pat. No. 6,513,398 B1 to Dewert Antriebs-und Systemtechnik GmbH & Co. KG. An example of another way of arranging the end stop switches is disclosed in EP 0 647 799 A3 to Linak A/S. Here, the end stop switches are arranged in connection with one end of the outer tube, which is axially displaceable. When the activation element is in its outermost position, it displaces the outer tube a short distance outwards, thus activating the corresponding end stop switch. In the fully retracted position the activation element displaces the outer tube a little inwards, thus activating the other end stop switch. When an end stop switch is activated, it is basically not known whether the activation element is in one or the other end position. Activation of the end stop switch merely causes an interruption of the motor current.
In certain situations it is, however, desired to know whether the activation element is in one or the other end position. This is, e.g., relevant if the actuator and the function which it performs is hidden inside equipment, or if the operation device is located so that neither the actuator nor the function is visible. The existing end stop switches may in principal be part of a detection of in which end position the activation element is located. This is, however, so difficult and expensive in terms of construction that it is not practiced. As an option for linear actuators, systems exist where the position of the activation element may be determined with a high degree of accuracy. This could, e.g., be a potentiometer, a magnetic-based position determination system with a Hall sensor, or an optical system. These systems meet the requirements where it is necessary at all times to know the exact position of the activation element. These types of systems are expensive and exceed the requirements when it is only desired to determine in which of the two end positions the activation element is located.
When the actuators are incorporated into a structure wherein it is required or desired to distinguish between its two end positions, the manufacturer of the machinery was thus obliged to place independent switches in the structure in order to detect whether the activation element is in one or the other end position. This is both difficult and expensive.
The object of the invention is to provide a solution to the outlined problem, where a simple and inexpensive way of detecting whether the activation element is in one of the end positions is desired, and if so which of the end positions.
This is achieved according to the invention by incorporation at least one, preferably an extra set, of switches in the actuator for detecting the end positions of the activation element. Such signal switches are used for determining in which end position the activation element is located. In case it is only desired to know one of the end positions, only one signal switch is necessary.
The signal switches are expediently arranged so that they are activated immediately before the activation of the end stop switches. This ensures that the signal switch is activated when the activation element is in the corresponding end position. In principle, signal switches may also be located after the end stop switches, as the activation element due to the inertia continues a short distance after the current for the motor has been interrupted.
An extra set of switches also enables an absolute separation from the electrical system of the actuator. The contacts may thus be potential free or, if desired, be connected to a potential with one of the poles. Whether the contact should be “normally open” or “normally closed” is also a free choice. The connection for the switches may be a cable and/or plug connection to ensure an easy and secure connection out of the actuator. Alternatively to an extra set of signal switches in a separate housing, the extra contact set may according to the invention be integrated directly in the same housing which contains the unique end stop switches. If it is not desired that the two contact sets are activated at the same time, which in most cases would be sufficient, the switches may with their activation parts be displaced from each other.
For the benefit of a simple and easy mounting of the switches in the linear actuator, the switches may be mounted on one or more printed circuit boards which are expediently mounted in specially constructed guides in the actuator. Thus is ensured that the two sets of switches are arranged precisely in a position where they may be activated and deactivated depending on whether the activation element is in one or the other end position. The activation may be directly or indirectly performed by the activation element, e.g., by the spindle nut or an axially displaceable outer tube.
An advantage of the invention is that the solution provided to the outlined problem is simple and inexpensive. By incorporating the necessary extra signal switches into the linear actuator, a simple detection of whether the activation element is in one of the outermost positions is achieved. Further, the difficult, vulnerable and expensive instrumentation of the machinery with switches is rendered redundant.
The invention is not limited to only using the method described above for activating the switches. Other methods are known and may be visualized for activation of the end stop switches and thus also the extra switches.
The core of the invention is not the method for activating the switches, but the fact that an extra set of switches is used for, simply and independently from the electrical system of the actuator, producing a signal indicating whether the activation element is in one of the end positions.
Here, switches designed as mechanical switches are described, but the switches may also be implemented in different ways, e.g., with a pressure transducer or magnetically with a magnet and a Hall-sensor.
An embodiment of the invention will be explained more fully below with reference to the accompanying drawing, in which
The schematic diagram shown in
The linear actuator is set for mass production in that the switches 17,21; 23,25, as shown in
Number | Date | Country | Kind |
---|---|---|---|
PA 2008 00884 | Jun 2008 | DK | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK2009/000152 | 6/24/2009 | WO | 00 | 11/15/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/155922 | 12/30/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4246991 | Oldakowski | Jan 1981 | A |
5064044 | Oketani et al. | Nov 1991 | A |
5927144 | Koch | Jul 1999 | A |
6321611 | Szu et al. | Nov 2001 | B1 |
6459182 | Pfann et al. | Oct 2002 | B1 |
6513398 | Finkemeyer | Feb 2003 | B1 |
7066041 | Nielsen | Jun 2006 | B2 |
7262377 | Wei et al. | Aug 2007 | B1 |
7932473 | Sorensen et al. | Apr 2011 | B2 |
8015890 | Christensen et al. | Sep 2011 | B2 |
8040082 | Bastholm | Oct 2011 | B2 |
20070035153 | Henning | Feb 2007 | A1 |
20100283421 | Knudsen et al. | Nov 2010 | A1 |
20100315031 | Jensen | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
0647799 | Apr 1995 | EP |
1420504 | May 2004 | EP |
Entry |
---|
English Abstract of EP1420504. |
Number | Date | Country | |
---|---|---|---|
20110068725 A1 | Mar 2011 | US |