Linear amplifier power supply modulation for envelope tracking

Information

  • Patent Grant
  • 8947161
  • Patent Number
    8,947,161
  • Date Filed
    Monday, December 3, 2012
    11 years ago
  • Date Issued
    Tuesday, February 3, 2015
    9 years ago
Abstract
Circuitry, which includes a linear amplifier and a linear amplifier power supply, is disclosed. The linear amplifier at least partially provides an envelope power supply signal to a radio frequency (RF) power amplifier (PA) using a selected one of a group of linear amplifier supply voltages. The linear amplifier power supply provides at least one of the group of linear amplifier supply voltages. Selection of the selected one of the group of linear amplifier supply voltages is based on a desired voltage of the envelope power supply signal.
Description
FIELD OF THE DISCLOSURE

Embodiments of the present disclosure relate to switching power supplies and radio frequency (RF) power amplifiers, both of which may be used in RF communication systems.


BACKGROUND

As wireless communications technologies evolve, wireless communications systems become increasingly sophisticated. As such, wireless communications protocols continue to expand and change to take advantage of the technological evolution. As a result, to maximize flexibility, many wireless communications devices must be capable of supporting any number of wireless communications protocols, each of which may have certain performance requirements, such as specific out-of-band emissions requirements, linearity requirements, or the like. Further, portable wireless communications devices are typically battery powered and need to be relatively small, and have low cost. As such, to minimize size, cost, and power consumption, RF circuitry in such a device needs to be as simple, small, and efficient as is practical. Thus, there is a need for RF circuitry in a communications device that is low cost, small, simple, and efficient.


SUMMARY

Embodiments of the present disclosure relate to circuitry, which includes a linear amplifier and a linear amplifier power supply. The linear amplifier at least partially provides an envelope power supply signal to a radio frequency (RF) power amplifier (PA) using a selected one of a group of linear amplifier supply voltages. The linear amplifier power supply provides at least one of the group of linear amplifier supply voltages. Selection of the selected one of the group of linear amplifier supply voltages is based on a desired voltage of the envelope power supply signal.


In one embodiment of the circuitry, the RF PA receives and amplifies an RF input signal to provide an RF transmit signal using the envelope power supply signal, which provides power for amplification. In one embodiment of the RF input signal, the RF input signal is amplitude modulated. As such, the RF transmit signal is also amplitude modulated. Since the amplitude of the RF transmit signal is modulated, the amplitude of the RF transmit signal traverses within an envelope of the RF transmit signal. For proper operation of the RF PA, a voltage of the envelope power supply signal must be high enough to accommodate the envelope of the RF transmit signal. However, to increase efficiency in the RF PA, the voltage of the envelope power supply signal may at least partially track the envelope of the RF transmit signal. This tracking by the voltage of the envelope power supply signal is called envelope tracking.


A difference between the selected one of a group of linear amplifier supply voltages and the voltage of the envelope power supply signal is manifested as a voltage drop in the linear amplifier. To increase efficiency in the linear amplifier, the voltage drop in the linear amplifier may be reduced. In this regard, in one embodiment of the linear amplifier power supply, the selection of the selected one of the group of linear amplifier supply voltages is further based on reducing the voltage drop in the linear amplifier.


In one embodiment of the circuitry, a DC power source, such as a battery, provides one of the group of linear amplifier supply voltages and the linear amplifier power supply provides a balance of the group of linear amplifier supply voltages. As such, during envelope tracking, the selected one of the group of linear amplifier supply voltages may toggle between a voltage provided by the DC power source and a voltage provided by the linear amplifier power supply.


Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.



FIG. 1 shows an RF communications system according to one embodiment of the RF communications system.



FIG. 2 shows the RF communications system according to an alternate embodiment of the RF communications system.



FIG. 3 shows details of an envelope tracking power supply illustrated in FIG. 1 according to one embodiment of the envelope tracking power supply.



FIG. 4 shows details of the envelope tracking power supply illustrated in FIG. 1 according to an alternate embodiment of the envelope tracking power supply.



FIG. 5 shows details of the envelope tracking power supply illustrated in FIG. 1 according to an additional embodiment of the envelope tracking power supply.



FIG. 6 shows details of the envelope tracking power supply illustrated in FIG. 1 according to another embodiment of the envelope tracking power supply.



FIG. 7 shows details of the envelope tracking power supply illustrated in FIG. 1 according to a further embodiment of the envelope tracking power supply.



FIG. 8 shows details of the envelope tracking power supply illustrated in FIG. 1 according to a supplemental embodiment of the envelope tracking power supply.



FIG. 9 shows details of the envelope tracking power supply illustrated in FIG. 1 according to an extra embodiment of the envelope tracking power supply.





DETAILED DESCRIPTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure and illustrate the best mode of practicing the disclosure. Upon reading the following description in light of the accompanying drawings, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.



FIG. 1 shows an RF communications system 10 according to one embodiment of the RF communications system 10. The RF communications system 10 includes RF transmitter circuitry 12, RF system control circuitry 14, RF front-end circuitry 16, an RF antenna 18, and a DC power source 20. The RF transmitter circuitry 12 includes transmitter control circuitry 22, an RF PA 24, an envelope tracking power supply 26, and PA bias circuitry 28.


In one embodiment of the RF communications system 10, the RF front-end circuitry 16 receives via the RF antenna 18, processes, and forwards an RF receive signal RFR to the RF system control circuitry 14. The RF system control circuitry 14 provides an envelope power supply control signal VRMP and a transmitter configuration signal PACS to the transmitter control circuitry 22. The RF system control circuitry 14 provides an RF input signal RFI to the RF PA 24. The DC power source 20 provides a DC source signal VDC to the envelope tracking power supply 26. In one embodiment of the DC power source 20, the DC power source 20 is a battery.


The transmitter control circuitry 22 is coupled to the envelope tracking power supply 26 and to the PA bias circuitry 28. The envelope tracking power supply 26 provides an envelope power supply signal EPS to the RF PA 24 based on the envelope power supply control signal VRMP. The DC source signal VDC provides power to the envelope tracking power supply 26. As such, the envelope power supply signal EPS is based on the DC source signal VDC. The envelope power supply control signal VRMP is representative of a setpoint of the envelope power supply signal EPS. The RF PA 24 receives and amplifies the RF input signal RFI to provide an RF transmit signal RFT using the envelope power supply signal EPS. The envelope power supply signal EPS provides power for amplification. The RF front-end circuitry 16 receives, processes, and transmits the RF transmit signal RFT via the RF antenna 18. In one embodiment of the RF transmitter circuitry 12, the transmitter control circuitry 22 configures the RF transmitter circuitry 12 based on the transmitter configuration signal PACS.


The PA bias circuitry 28 provides a PA bias signal PAB to the RF PA 24. In this regard, the PA bias circuitry 28 biases the RF PA 24 via the PA bias signal PAB. In one embodiment of the PA bias circuitry 28, the PA bias circuitry 28 biases the RF PA 24 based on the transmitter configuration signal PACS. In one embodiment of the RF front-end circuitry 16, the RF front-end circuitry 16 includes at least one RF switch, at least one RF amplifier, at least one RF filter, at least one RF duplexer, at least one RF diplexer, at least one RF amplifier, the like, or any combination thereof. In one embodiment of the RF system control circuitry 14, the RF system control circuitry 14 is RF transceiver circuitry, which may include an RF transceiver IC, baseband controller circuitry, the like, or any combination thereof.



FIG. 2 shows the RF communications system 10 according to an alternate embodiment of the RF communications system 10. The RF communications system 10 illustrated in FIG. 2 is similar to the RF communications system 10 illustrated in FIG. 1, except in the RF communications system 10 illustrated in FIG. 2, the RF transmitter circuitry 12 further includes a digital communications interface 30, which is coupled between the transmitter control circuitry 22 and a digital communications bus 32. The digital communications bus 32 is also coupled to the RF system control circuitry 14. As such, the RF system control circuitry 14 provides the envelope power supply control signal VRMP (FIG. 1) and the transmitter configuration signal PACS (FIG. 1) to the transmitter control circuitry 22 via the digital communications bus 32 and the digital communications interface 30.



FIG. 3 shows details of the envelope tracking power supply 26 illustrated in FIG. 1 according to one embodiment of the envelope tracking power supply 26. The envelope tracking power supply 26 includes power supply control circuitry 34, a linear amplifier 36, and a switching supply 38. The power supply control circuitry 34 is coupled to the transmitter control circuitry 22, the linear amplifier 36 is coupled to the power supply control circuitry 34, and the switching supply 38 is coupled to the power supply control circuitry 34. The transmitter control circuitry 22 may forward the envelope power supply control signal VRMP to the power supply control circuitry 34.


Since the envelope power supply control signal VRMP is representative of the setpoint of the envelope power supply signal EPS, the power supply control circuitry 34 controls the linear amplifier 36 and the switching supply 38 based on the setpoint of the envelope power supply signal EPS. The linear amplifier 36 and the switching supply 38 provide the envelope power supply signal EPS, such that the linear amplifier 36 partially provides the envelope power supply signal EPS and the switching supply 38 partially provides the envelope power supply signal EPS. The switching supply 38 may provide power more efficiently than the linear amplifier 36. However, the linear amplifier 36 may provide the envelope power supply signal EPS more accurately than the switching supply 38. As such, the linear amplifier 36 regulates a voltage of the envelope power supply signal EPS based on the setpoint of the envelope power supply signal EPS, and the switching supply 38 operates to drive an output current from the linear amplifier 36 toward zero to maximize efficiency. In this regard, the linear amplifier 36 behaves like a voltage source and the switching supply 38 behaves like a current source.


As previously mentioned, in one embodiment of the RF communications system 10, the RF PA 24 receives and amplifies the RF input signal RFI to provide the RF transmit signal RFT using the envelope power supply signal EPS, which provides power for amplification. In one embodiment of the RF input signal RFI, the RF input signal RFI is amplitude modulated. As such, the RF transmit signal RFT is also amplitude modulated. Since the amplitude of the RF transmit signal RFT is modulated, the amplitude of the RF transmit signal RFT traverses within an envelope of the RF transmit signal RFT. For proper operation of the RF PA 24, a voltage of the envelope power supply signal EPS must be high enough to accommodate the envelope of the RF transmit signal RFT. However, to increase efficiency in the RF PA 24, the voltage of the envelope power supply signal EPS may at least partially track the envelope of the RF transmit signal RFT. This tracking by the voltage of the envelope power supply signal EPS is called envelope tracking.


In this regard, since the envelope power supply control signal VRMP is representative of the setpoint of the envelope power supply signal EPS, the envelope power supply control signal VRMP may be received and amplitude modulated to provide at least partial envelope tracking of the RF transmit signal RFT by causing the envelope power supply signal EPS to be amplitude modulated. In one embodiment of the envelope power supply control signal VRMP, a bandwidth of the envelope power supply control signal VRMP is greater than about 10 megahertz. In an alternate embodiment of the envelope power supply control signal VRMP, the bandwidth of the envelope power supply control signal VRMP is less than about 10 megahertz.



FIG. 4 shows details of the envelope tracking power supply 26 illustrated in FIG. 1 according to an alternate embodiment of the envelope tracking power supply 26. The envelope tracking power supply 26 illustrated in FIG. 4 is similar to the envelope tracking power supply 26 illustrated in FIG. 3, except the envelope tracking power supply 26 illustrated in FIG. 4 further includes a linear amplifier power supply 40 and a linear amplifier offset capacitive element CA. The linear amplifier power supply 40 is coupled to the power supply control circuitry 34 and to the switching supply 38, and the linear amplifier offset capacitive element CA is coupled between the linear amplifier 36 and the switching supply 38. As such, a series combination of the linear amplifier 36 and the linear amplifier offset capacitive element CA at least partially provides the envelope power supply signal EPS and the switching supply 38 at least partially provides the envelope power supply signal EPS directly.


The linear amplifier 36, the switching supply 38, and the linear amplifier power supply 40 receive the DC source signal VDC. The power supply control circuitry 34 provides a linear amplifier power supply select signal LPSS to the linear amplifier power supply 40 and provides a first power source select signal PSS1 to the linear amplifier 36. The linear amplifier power supply 40 provides a linear amplifier power supply output signal LPS to the linear amplifier 36.


The linear amplifier 36 at least partially provides the envelope power supply signal EPS to the RF PA 24 (FIG. 3) using a selected one of a group of linear amplifier supply voltages. The linear amplifier power supply 40 provides at least one of the group of linear amplifier supply voltages. Selection of the selected one of the group of linear amplifier supply voltages is based on a desired voltage of the envelope power supply signal EPS. The setpoint of the envelope power supply signal EPS is based on the desired voltage of the envelope power supply signal EPS. As such, the linear amplifier 36 regulates a voltage of the envelope power supply signal EPS based on the setpoint of the envelope power supply signal EPS.


A difference between the selected one of the group of linear amplifier supply voltages and the voltage of the envelope power supply signal EPS is manifested as a voltage drop in the linear amplifier 36. To increase efficiency in the linear amplifier 36, the voltage drop in the linear amplifier 36 may be reduced. In this regard, in one embodiment of the linear amplifier power supply 40, the selection of the selected one of the group of linear amplifier supply voltages is further based on reducing the voltage drop in the linear amplifier 36. However, the selected one of the group of linear amplifier supply voltages must provide a large enough voltage of the envelope power supply signal EPS to ensure that the linear amplifier 36 has sufficient operating headroom to function properly.


In one embodiment of the envelope tracking power supply 26, the DC power source 20 (FIG. 1) provides one of the group of linear amplifier supply voltages and the linear amplifier power supply 40 provides a balance of the group of linear amplifier supply voltages. In this regard, the linear amplifier 36 receives the DC source signal VDC and the linear amplifier power supply output signal LPS, such that the one of the group of linear amplifier supply voltages is provided via the DC source signal VDC and the balance of the group of linear amplifier supply voltages is provided via the linear amplifier power supply output signal LPS. Further, the linear amplifier 36 receives the first power source select signal PSS1, such that selection between using the one of the group of linear amplifier supply voltages and using the balance of the group of linear amplifier supply voltages is based on the first power source select signal PSS1.


The power supply control circuitry 34 selects one of the balance of the group of linear amplifier supply voltages and provides a linear amplifier power supply select signal LPSS to the linear amplifier power supply 40, such that the linear amplifier power supply select signal LPSS is indicative of the selection of the one of the balance of the group of linear amplifier supply voltages. The linear amplifier 36 receives the linear amplifier power supply select signal LPSS and provides the one of the balance of the group of linear amplifier supply voltages via the linear amplifier power supply output signal LPS based on the linear amplifier power supply select signal LPSS. Further, the power supply control circuitry 34 provides the first power source select signal PSS1 and the linear amplifier power supply select signal LPSS, such that the first power source select signal PSS1 and the linear amplifier power supply select signal LPSS are based on the envelope power supply control signal VRMP. The first power source select signal PSS1 may be delayed relative to receipt of the envelope power supply control signal VRMP to compensate for processing delays of the envelope power supply control signal VRMP.


In one embodiment of the linear amplifier power supply 40, during envelope tracking, the linear amplifier power supply 40 cannot change the linear amplifier power supply output signal LPS fast enough to follow the envelope of the envelope power supply signal EPS. Therefore, the selected one of the group of linear amplifier supply voltages may toggle between the voltage provided by the DC power source 20 (FIG. 1) and the voltage provided by the linear amplifier power supply 40. In this regard, the linear amplifier 36 toggles between using the DC source signal VDC and the linear amplifier power supply output signal LPS to at least partially provide the envelope power supply signal EPS. As such, the linear amplifier power supply output signal LPS may be based on a maximum amplitude of the envelope power supply signal EPS. Further, the toggling between using the DC source signal VDC and the linear amplifier power supply output signal LPS may be based on a programmable threshold associated with the envelope power supply signal EPS.


During operation, the linear amplifier offset capacitive element CA may have an offset voltage. This offset voltage may allow the linear amplifier 36 to function properly even if a voltage of the envelope power supply signal EPS is greater than a voltage of the DC source signal VDC or greater than a voltage of the linear amplifier power supply output signal LPS. In an alternate embodiment of the envelope tracking power supply 26, the linear amplifier offset capacitive element CA is omitted. In one embodiment of the envelope tracking power supply 26, the switching supply 34 operates to drive an output current from the linear amplifier 36 toward zero to maximize efficiency.



FIG. 5 shows details of the envelope tracking power supply 26 illustrated in FIG. 1 according to an additional embodiment of the envelope tracking power supply 26. The envelope tracking power supply 26 illustrated in FIG. 5 is similar to the envelope tracking power supply 26 illustrated in FIG. 4, except in the envelope tracking power supply 26 illustrated in FIG. 5, the linear amplifier 36 does not receive the first power source select signal PSS1 or the DC source signal VDC. As result, the linear amplifier power supply 40 provides the entire group of linear amplifier supply voltages. Therefore, during envelope tracking, the linear amplifier power supply 40 can change the linear amplifier power supply output signal LPS fast enough to adequately follow the envelope of the envelope power supply signal EPS.



FIG. 6 shows details of the envelope tracking power supply 26 illustrated in FIG. 1 according to another embodiment of the envelope tracking power supply 26. The envelope tracking power supply 26 illustrated in FIG. 6 is similar to the envelope tracking power supply 26 illustrated in FIG. 4, except the envelope tracking power supply 26 illustrated in FIG. 6 shows details of the linear amplifier 36. The linear amplifier 36 includes first P-type field effect transistor (PFET) circuitry 42, second PFET circuitry 44, N-type field effect transistor (NFET) circuitry 46, and a driver circuit 48. The driver circuit 48 feeds the first PFET circuitry 42, the second PFET circuitry 44, and the NFET circuitry 46. One of the first PFET circuitry 42 and the second PFET circuitry 44 is enabled based on the first power source select signal PSS1. The one of the first PFET circuitry 42, the second PFET circuitry 44 that is enabled and the NFET circuitry 46 form a final output stage that provides at least a portion of the envelope power supply signal EPS via the linear amplifier offset capacitive element CA.


The first PFET circuitry 42 receives the DC source signal VDC and the second PFET circuitry 44 receives the linear amplifier power supply output signal LPS. As such, when the first PFET circuitry 42 is enabled, the DC source signal VDC provides power to the final output stage. When the second PFET circuitry 44 is enabled, the linear amplifier power supply output signal LPS provides power to the final output stage. In one embodiment of the first power source select signal PSS1, the first power source select signal PSS1 is a two-bit signal, such that each of the first PFET circuitry 42 and the second PFET circuitry 44 receives a corresponding bit for selection.


In one embodiment of the linear amplifier 36, when the linear amplifier 36 transitions between disabling the first PFET circuitry 42 and enabling the second PFET circuitry 44 or transitions between disabling the second PFET circuitry 44 and enabling the first PFET circuitry 42, such transitioning is delayed until the NFET circuitry 46 is in an ON state. In general, one of the first PFET circuitry 42 and the second PFET circuitry 44 is enabled. The linear amplifier 36 disables the one of the first PFET circuitry 42 and the second PFET circuitry 44 and enables an opposite of the first PFET circuitry 42 and the second PFET circuitry 44 when the NFET circuitry 46 is in an ON state, such that both the first PFET circuitry 42 and the second PFET circuitry 44 are in an OFF state.



FIG. 7 shows details of the envelope tracking power supply 26 illustrated in FIG. 1 according to a further embodiment of the envelope tracking power supply 26. The envelope tracking power supply 26 illustrated in FIG. 7 is similar to the envelope tracking power supply 26 illustrated in FIG. 4, except the envelope tracking power supply 26 illustrated in FIG. 7 further includes ripple cancellation circuitry 50 and a ripple circuit offset capacitive element CR. The ripple cancellation circuitry 50 is coupled to the power supply control circuitry 34 and to the switching supply 38, and the ripple circuit offset capacitive element CR is coupled between the ripple cancellation circuitry 50 and the switching supply 38.


The ripple cancellation circuitry 50 receives the DC source signal VDC. The power supply control circuitry 34 provides a second power source select signal PSS2 to the ripple cancellation circuitry 50. The linear amplifier power supply 40 provides the linear amplifier power supply output signal LPS to the ripple cancellation circuitry 50. The ripple cancellation circuitry 50 at least partially cancels ripple current associated with at least one inductive element (not shown) in the switching supply 38 using one of the DC source signal VDC and the linear amplifier power supply output signal LPS. The ripple cancellation circuitry 50 receives the second power source select signal PSS2, such that selection between using the one of the DC source signal VDC and the linear amplifier power supply output signal LPS is based on the second power source select signal PSS2. The second power source select signal PSS2 may be based on a maximum amplitude of the envelope power supply signal EPS.


During operation, the ripple circuit offset capacitive element CR may have an offset voltage. This offset voltage may allow the ripple cancellation circuitry 50 to function properly even if a voltage of the envelope power supply signal EPS is greater than a voltage of the DC source signal VDC or greater than a voltage of the linear amplifier power supply output signal LPS. In an alternate embodiment of the envelope tracking power supply 26, the ripple circuit offset capacitive element CR is omitted.


In one embodiment of the envelope tracking power supply 26, the switching supply 38 operates to drive an output current from the ripple cancellation circuitry 50 toward zero to maximize efficiency. In an alternate embodiment of the envelope tracking power supply 26, the switching supply 38 operates to drive the output current from the linear amplifier 36 toward zero and to drive the output current from the ripple cancellation circuitry 50 toward zero to maximize efficiency.



FIG. 8 shows details of the envelope tracking power supply 26 illustrated in FIG. 1 according to a supplemental embodiment of the envelope tracking power supply 26. The envelope tracking power supply 26 illustrated in FIG. 8 is similar to the envelope tracking power supply 26 illustrated in FIG. 4, except the envelope tracking power supply 26 illustrated in FIG. 8 shows details of the linear amplifier power supply 40. The linear amplifier power supply 40 includes a capacitor-based charge pump 52, a first flying capacitive element C1F, and a second flying capacitive element C2F. The first flying capacitive element C1F and the second flying capacitive element C2F are coupled to the capacitor-based charge pump 50. In general, the first flying capacitive element C1F and the second flying capacitive element C2F provide a pair of flying capacitive elements, which are coupled to the capacitor-based charge pump 52. The capacitor-based charge pump 52 transfers charge from the DC power source 20 (FIG. 1) to the linear amplifier 36 using the pair of flying capacitive elements. In an alternate embodiment of the envelope tracking power supply 26, the capacitor-based charge pump 52 further transfers charge from the DC power source 20 (FIG. 1) to the ripple cancellation circuitry 50 (FIG. 7).


The DC power source 20 (FIG. 1) provides power to the capacitor-based charge pump 52 via the DC source signal VDC. As such, the capacitor-based charge pump 52 receives the DC source signal VDC and provides the linear amplifier power supply output signal LPS based on the DC source signal VDC. In this regard, a voltage magnitude of the linear amplifier power supply output signal LPS may be greater than, less than, or equal to the voltage magnitude of the DC source signal VDC.


In one embodiment of the capacitor-based charge pump 52, the voltage magnitude of the DC source signal VDC is always less than the voltage magnitude of the linear amplifier power supply output signal LPS. As such, the one of the group of linear amplifier supply voltages is less than each of the balance of the group of linear amplifier supply voltages. In an alternate embodiment of the capacitor-based charge pump 52, the voltage magnitude of the DC source signal VDC is always greater than the voltage magnitude of the linear amplifier power supply output signal LPS. As such, the one of the group of linear amplifier supply voltages is greater than each of the balance of the group of linear amplifier supply voltages. In an additional embodiment of the capacitor-based charge pump 52, the voltage magnitude of the DC source signal VDC is sometimes less than the voltage magnitude of the linear amplifier power supply output signal LPS and is sometimes greater than the voltage magnitude of the linear amplifier power supply output signal LPS. As such, the one of the group of linear amplifier supply voltages is less than at least one of the balance of the group of linear amplifier supply voltages and is greater than at least one of the balance of the group of linear amplifier supply voltages. In another embodiment of the capacitor-based charge pump 52, the voltage magnitude of the DC source signal VDC is about equal to the voltage magnitude of the linear amplifier power supply output signal LPS


In a first exemplary embodiment of the capacitor-based charge pump 52, a ratio of a voltage magnitude of the linear amplifier power supply output signal LPS divided by a voltage magnitude of the DC source signal VDC is equal to about one.


In a second exemplary embodiment of the capacitor-based charge pump 52, the ratio of the voltage magnitude of the linear amplifier power supply output signal LPS divided by the voltage magnitude of the DC source signal VDC is equal to about four-thirds.


In a third exemplary embodiment of the capacitor-based charge pump 52, the ratio of the voltage magnitude of the linear amplifier power supply output signal LPS divided by the voltage magnitude of the DC source signal VDC is equal to about three-halves.


In a fourth exemplary embodiment of the capacitor-based charge pump 52, the ratio of the voltage magnitude of the linear amplifier power supply output signal LPS divided by the voltage magnitude of the DC source signal VDC is equal to about one-fourth.


In a fifth exemplary embodiment of the capacitor-based charge pump 52, the ratio of the voltage magnitude of the linear amplifier power supply output signal LPS divided by the voltage magnitude of the DC source signal VDC is equal to about one-third.


In a sixth exemplary embodiment of the capacitor-based charge pump 52, the ratio of the voltage magnitude of the linear amplifier power supply output signal LPS divided by the voltage magnitude of the DC source signal VDC is equal to about one-half.


In a seventh exemplary embodiment of the capacitor-based charge pump 52, the ratio of the voltage magnitude of the linear amplifier power supply output signal LPS divided by the voltage magnitude of the DC source signal VDC is equal to about two-thirds.


In an eighth exemplary embodiment of the capacitor-based charge pump 52, the ratio of the voltage magnitude of the linear amplifier power supply output signal LPS divided by the voltage magnitude of the DC source signal VDC is equal to about three-fourths.



FIG. 9 shows details of the envelope tracking power supply 26 illustrated in FIG. 1 according to an extra embodiment of the envelope tracking power supply 26. The envelope tracking power supply 26 illustrated in FIG. 9 is similar to the envelope tracking power supply 26 illustrated in FIG. 4, except in the envelope tracking power supply 26 illustrated in FIG. 9, the linear amplifier power supply select signal LPSS is omitted. As such, the linear amplifier power supply 40 provides a single linear amplifier supply voltage, such that the balance of the group of linear amplifier supply voltages is one linear amplifier supply voltage.


Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims
  • 1. Circuitry comprising: a linear amplifier adapted to at least partially provide an envelope power supply signal to a radio frequency (RF) power amplifier (PA) using a selected one of a plurality of linear amplifier supply voltages;power supply control circuitry adapted to select one of the plurality of linear amplifier supply voltages based on a desired voltage of the envelope power supply signal;a linear amplifier power supply adapted to provide at least one of the plurality of linear amplifier supply voltages;a setpoint of the envelope power supply signal is based on the desired voltage of the envelope power supply signal; andan envelope power supply control signal is representative of the setpoint of the envelope power supply signal.
  • 2. The circuitry of claim 1 wherein the linear amplifier is further adapted to regulate a voltage of the envelope power supply signal based on the setpoint of the envelope power supply signal.
  • 3. The circuitry of claim 1 wherein the envelope power supply control signal is amplitude modulated to provide at least partial envelope tracking of an RF transmit signal.
  • 4. The circuitry of claim 3 wherein the RF PA is adapted to receive and amplify an RF input signal to provide the RF transmit signal using the envelope power supply signal, which provides power for amplification.
  • 5. The circuitry of claim 4 further comprising the RF PA.
  • 6. The circuitry of claim 3 wherein a bandwidth of the envelope power supply control signal is greater than about 10 megahertz.
  • 7. Circuitry comprising: a linear amplifier adapted to at least partially provide an envelope power supply signal to a radio frequency (RF) power amplifier (PA) using a selected one of a plurality of linear amplifier supply voltages;power supply control circuitry adapted to select one of the plurality of linear amplifier supply voltages based on a desired voltage of the envelope power supply signal;a linear amplifier power supply adapted to provide at least one of the plurality of linear amplifier supply voltages; andthe linear amplifier is further adapted to receive a direct current (DC) source signal and a linear amplifier power supply output signal, such that one of the plurality of linear amplifier supply voltages is provided via the DC source signal and a balance of the plurality of linear amplifier supply voltages is provided via the linear amplifier power supply output signal.
  • 8. The circuitry of claim 7 wherein the balance of the plurality of linear amplifier supply voltages is one linear amplifier supply voltage.
  • 9. The circuitry of claim 7 wherein a DC power source is adapted to provide the DC source signal.
  • 10. The circuitry of claim 9 wherein the DC power source is a battery.
  • 11. The circuitry of claim 7 wherein the linear amplifier is further adapted to receive a first power source select signal, such that selection between using the one of the plurality of linear amplifier supply voltages and using the balance of the plurality of linear amplifier supply voltages is based on the first power source select signal.
  • 12. The circuitry of claim 11 wherein the linear amplifier comprises first P-type field effect transistor (PFET) circuitry and second PFET circuitry, such that one of the first PFET circuitry and the second PFET circuitry is enabled based on the first power source select signal.
  • 13. The circuitry of claim 12 wherein the first power source select signal is a two-bit signal.
  • 14. The circuitry of claim 12 wherein the linear amplifier further comprises N-type field effect transistor (NFET) circuitry and is further adapted to disable the one of the first PFET circuitry and the second PFET circuitry and to enable an opposite of the first PFET circuitry and the second PFET circuitry only when the NFET circuitry is in an ON state, such that both the first PFET circuitry and the second PFET circuitry are in an OFF state.
  • 15. The circuitry of claim 11 wherein the linear amplifier power supply is further adapted to receive a linear amplifier power supply select signal and to provide one of the balance of the plurality of linear amplifier supply voltages based on the linear amplifier power supply select signal.
  • 16. The circuitry of claim 15 wherein the power supply control circuitry is adapted to provide the first power source select signal and the linear amplifier power supply select signal, such that the first power source select signal and the linear amplifier power supply select signal are based on an envelope power supply control signal.
  • 17. The circuitry of claim 11 wherein an envelope power supply control signal is representative of a setpoint of the envelope power supply signal, such that the first power source select signal is delayed relative to receipt of the envelope power supply control signal to compensate for processing delays of the envelope power supply control signal.
  • 18. The circuitry of claim 7 further comprising ripple cancellation circuitry adapted to at least partially cancel ripple current associated with at least one inductive element in a supply using one of the DC source signal and the linear amplifier power supply output signal.
  • 19. The circuitry of claim 18 wherein the ripple cancellation circuitry is further adapted to receive a second power source select signal, such that selection between using the one of the DC source signal and the linear amplifier power supply output signal is based on the second power source select signal.
  • 20. The circuitry of claim 19 wherein the second power source select signal is based on a maximum amplitude of the envelope power supply signal.
  • 21. The circuitry of claim 7 wherein during envelope tracking, the linear amplifier is further adapted to toggle between using the DC source signal and using the linear amplifier power supply output signal to at least partially provide the envelope power supply signal.
  • 22. The circuitry of claim 21 wherein the linear amplifier power supply output signal is based on a maximum amplitude of the envelope power supply signal.
  • 23. The circuitry of claim 21 wherein toggling between using the DC source signal and using the linear amplifier power supply output signal to at least partially provide the envelope power supply signal is based on a programmable threshold associated with the envelope power supply signal.
  • 24. The circuitry of claim 7 wherein the linear amplifier power supply comprises a capacitor-based charge pump adapted to receive the DC source signal and provide the linear amplifier power supply output signal based on the DC source signal.
  • 25. The circuitry of claim 24 wherein the one of the plurality of linear amplifier supply voltages is less than each of the balance of the plurality of linear amplifier supply voltages.
  • 26. The circuitry of claim 24 wherein the one of the plurality of linear amplifier supply voltages is greater than each of the balance of the plurality of linear amplifier supply voltages.
  • 27. The circuitry of claim 24 wherein the one of the plurality of linear amplifier supply voltages is less than at least one of the balance of the plurality of linear amplifier supply voltages and is greater than at least one of the balance of the plurality of linear amplifier supply voltages.
  • 28. The circuitry of claim 1 wherein the linear amplifier power supply is further adapted to provide the entire plurality of linear amplifier supply voltages.
  • 29. Circuitry wherein a linear amplifier is adapted to at least partially provide an envelope power supply signal to a radio frequency (RF) power amplifier (PA) using a selected one of a plurality of linear amplifier supply voltages and comprising: power supply control circuitry adapted to select one of the plurality of linear amplifier supply voltages based on a desired voltage of the envelope power supply signal;a linear amplifier power supply adapted to provide at least one of the plurality of linear amplifier supply voltages;a setpoint of the envelope power supply signal is based on the desired voltage of the envelope power supply signal; andan envelope power supply control signal is representative of the setpoint of the envelope power supply signal.
  • 30. A method comprising: at least partially providing an envelope power supply signal to a radio frequency (RF) power amplifier (PA) using a selected one of a plurality of linear amplifier supply voltages, such that selection of the selected one of the plurality of linear amplifier supply voltages is based on a desired voltage of the envelope power supply signal; andusing a linear amplifier power supply to provide at least one of the plurality of linear amplifier supply voltages, such that a setpoint of the envelope power supply signal is based on the desired voltage of the envelope power supply signal and an envelope power supply control signal is representative of the setpoint of the envelope power supply signal.
RELATED APPLICATIONS

This application claims the benefit of U.S. provisional patent application No. 61/565,751, filed Dec. 1, 2011, the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (242)
Number Name Date Kind
3969682 Rossum Jul 1976 A
3980964 Grodinsky Sep 1976 A
4587552 Chin May 1986 A
4692889 McNeely Sep 1987 A
4831258 Paulk et al. May 1989 A
4996500 Larson et al. Feb 1991 A
5099203 Weaver et al. Mar 1992 A
5146504 Pinckley Sep 1992 A
5187396 Armstrong, II et al. Feb 1993 A
5311309 Ersoz et al. May 1994 A
5317217 Rieger et al. May 1994 A
5351087 Christopher et al. Sep 1994 A
5414614 Fette et al. May 1995 A
5420643 Romesburg et al. May 1995 A
5486871 Filliman et al. Jan 1996 A
5532916 Tamagawa Jul 1996 A
5541547 Lam Jul 1996 A
5581454 Collins Dec 1996 A
5646621 Cabler et al. Jul 1997 A
5715526 Weaver, Jr. et al. Feb 1998 A
5767744 Irwin et al. Jun 1998 A
5822318 Tiedemann, Jr. et al. Oct 1998 A
5898342 Bell Apr 1999 A
5905407 Midya May 1999 A
5936464 Grondahl Aug 1999 A
6043610 Buell Mar 2000 A
6043707 Budnik Mar 2000 A
6055168 Kotowski et al. Apr 2000 A
6070181 Yeh May 2000 A
6118343 Winslow Sep 2000 A
6133777 Savelli Oct 2000 A
6141541 Midya et al. Oct 2000 A
6147478 Skelton et al. Nov 2000 A
6198645 Kotowski et al. Mar 2001 B1
6204731 Jiang et al. Mar 2001 B1
6256482 Raab Jul 2001 B1
6300826 Mathe et al. Oct 2001 B1
6313681 Yoshikawa Nov 2001 B1
6348780 Grant Feb 2002 B1
6483281 Hwang Nov 2002 B2
6559689 Clark May 2003 B1
6566935 Renous May 2003 B1
6583610 Groom et al. Jun 2003 B2
6617930 Nitta Sep 2003 B2
6621808 Sadri Sep 2003 B1
6624712 Cygan et al. Sep 2003 B1
6658445 Gau et al. Dec 2003 B1
6681101 Eidson et al. Jan 2004 B1
6690652 Sadri Feb 2004 B1
6701141 Lam Mar 2004 B2
6703080 Reyzelman et al. Mar 2004 B2
6728163 Gomm et al. Apr 2004 B2
6744151 Jackson et al. Jun 2004 B2
6819938 Sahota Nov 2004 B2
6958596 Sferrazza et al. Oct 2005 B1
6995995 Zeng et al. Feb 2006 B2
7038536 Cioffi et al. May 2006 B2
7043213 Robinson et al. May 2006 B2
7058373 Grigore Jun 2006 B2
7099635 McCune Aug 2006 B2
7200365 Watanabe et al. Apr 2007 B2
7233130 Kay Jun 2007 B1
7253589 Potanin et al. Aug 2007 B1
7254157 Crotty et al. Aug 2007 B1
7279875 Gan et al. Oct 2007 B2
7394233 Trayling et al. Jul 2008 B1
7405618 Lee et al. Jul 2008 B2
7411316 Pai Aug 2008 B2
7414330 Chen Aug 2008 B2
7515885 Sander et al. Apr 2009 B2
7528807 Kim et al. May 2009 B2
7529523 Young et al. May 2009 B1
7539466 Tan et al. May 2009 B2
7595569 Amerom et al. Sep 2009 B2
7609114 Hsieh et al. Oct 2009 B2
7615979 Caldwell Nov 2009 B2
7627622 Conrad et al. Dec 2009 B2
7646108 Paillet et al. Jan 2010 B2
7653366 Grigore Jan 2010 B2
7679433 Li Mar 2010 B1
7684216 Choi et al. Mar 2010 B2
7696735 Oraw et al. Apr 2010 B2
7715811 Kenington May 2010 B2
7724837 Filimonov et al. May 2010 B2
7773691 Khlat et al. Aug 2010 B2
7777459 Williams Aug 2010 B2
7782036 Wong et al. Aug 2010 B1
7783269 Vinayak et al. Aug 2010 B2
7800427 Chae et al. Sep 2010 B2
7805115 McMorrow et al. Sep 2010 B1
7859336 Markowski et al. Dec 2010 B2
7880547 Lee et al. Feb 2011 B2
7894216 Melanson Feb 2011 B2
7898268 Bemardon et al. Mar 2011 B2
7898327 Nentwig Mar 2011 B2
7907010 Wendt et al. Mar 2011 B2
7915961 Li Mar 2011 B1
7923974 Martin et al. Apr 2011 B2
7965140 Takahashi Jun 2011 B2
7994864 Chen et al. Aug 2011 B2
8000117 Petricek Aug 2011 B2
8008970 Homol et al. Aug 2011 B1
8022761 Drogi et al. Sep 2011 B2
8026765 Giovannotto Sep 2011 B2
8044639 Tamegai et al. Oct 2011 B2
8068622 Melanson et al. Nov 2011 B2
8081199 Takata et al. Dec 2011 B2
8093951 Zhang et al. Jan 2012 B1
8159297 Kumagai Apr 2012 B2
8164388 Iwamatsu Apr 2012 B2
8174313 Vice May 2012 B2
8183917 Drogi et al. May 2012 B2
8183929 Grondahl May 2012 B2
8198941 Lesso Jun 2012 B2
8204456 Xu et al. Jun 2012 B2
8274332 Cho et al. Sep 2012 B2
8289084 Morimoto et al. Oct 2012 B2
8362837 Koren et al. Jan 2013 B2
8541993 Notman et al. Sep 2013 B2
8542061 Levesque et al. Sep 2013 B2
8548398 Baxter et al. Oct 2013 B2
8558616 Shizawa et al. Oct 2013 B2
8588713 Khlat Nov 2013 B2
8611402 Chiron Dec 2013 B2
8618868 Khlat et al. Dec 2013 B2
8624576 Khlat et al. Jan 2014 B2
8624760 Ngo et al. Jan 2014 B2
8626091 Khlat et al. Jan 2014 B2
8638165 Shah et al. Jan 2014 B2
8648657 Rozenblit Feb 2014 B1
8659355 Henshaw et al. Feb 2014 B2
8718582 See et al. May 2014 B2
20020071497 Bengtsson et al. Jun 2002 A1
20030031271 Bozeki et al. Feb 2003 A1
20030062950 Hamada et al. Apr 2003 A1
20030137286 Kimball et al. Jul 2003 A1
20030198063 Smyth Oct 2003 A1
20030206603 Husted Nov 2003 A1
20030220953 Allred Nov 2003 A1
20030232622 Seo et al. Dec 2003 A1
20040047329 Zheng Mar 2004 A1
20040051384 Jackson et al. Mar 2004 A1
20040124913 Midya et al. Jul 2004 A1
20040184569 Challa et al. Sep 2004 A1
20040196095 Nonaka Oct 2004 A1
20040219891 Hadjichristos Nov 2004 A1
20040239301 Kobayashi Dec 2004 A1
20040266366 Robinson et al. Dec 2004 A1
20040267842 Allred Dec 2004 A1
20050008093 Matsuura et al. Jan 2005 A1
20050032499 Cho Feb 2005 A1
20050047180 Kim Mar 2005 A1
20050064830 Grigore Mar 2005 A1
20050093630 Whittaker et al. May 2005 A1
20050110562 Robinson et al. May 2005 A1
20050122171 Miki et al. Jun 2005 A1
20050156582 Redl et al. Jul 2005 A1
20050156662 Raghupathy et al. Jul 2005 A1
20050157778 Trachewsky et al. Jul 2005 A1
20050200407 Arai et al. Sep 2005 A1
20060006946 Burns et al. Jan 2006 A1
20060097711 Brandt May 2006 A1
20060128324 Tan et al. Jun 2006 A1
20060178119 Jarvinen Aug 2006 A1
20060181340 Dhuyvetter Aug 2006 A1
20060220627 Koh Oct 2006 A1
20060244513 Yen et al. Nov 2006 A1
20070008804 Lu et al. Jan 2007 A1
20070014382 Shakeshaft et al. Jan 2007 A1
20070024360 Markowski Feb 2007 A1
20070063681 Liu Mar 2007 A1
20070082622 Leinonen et al. Apr 2007 A1
20070146076 Baba Jun 2007 A1
20070182392 Nishida Aug 2007 A1
20070183532 Matero Aug 2007 A1
20070259628 Carmel et al. Nov 2007 A1
20080003950 Haapoja et al. Jan 2008 A1
20080044041 Tucker et al. Feb 2008 A1
20080081572 Rofougaran Apr 2008 A1
20080104432 Vinayak et al. May 2008 A1
20080150619 Lesso et al. Jun 2008 A1
20080205095 Pinon et al. Aug 2008 A1
20080242246 Minnis et al. Oct 2008 A1
20080252278 Lindeberg et al. Oct 2008 A1
20080258831 Kunihiro et al. Oct 2008 A1
20080280577 Beukema et al. Nov 2008 A1
20090004981 Eliezer et al. Jan 2009 A1
20090097591 Kim Apr 2009 A1
20090160548 Ishikawa et al. Jun 2009 A1
20090167260 Pauritsch et al. Jul 2009 A1
20090174466 Hsieh et al. Jul 2009 A1
20090184764 Markowski et al. Jul 2009 A1
20090190699 Kazakevich et al. Jul 2009 A1
20090218995 Ahn Sep 2009 A1
20090230934 Hooijschuur et al. Sep 2009 A1
20090284235 Weng et al. Nov 2009 A1
20090289720 Takinami et al. Nov 2009 A1
20090319065 Risbo Dec 2009 A1
20100001793 Van Zeijl et al. Jan 2010 A1
20100019749 Katsuya et al. Jan 2010 A1
20100019840 Takahashi Jan 2010 A1
20100045247 Blanken et al. Feb 2010 A1
20100171553 Okubo et al. Jul 2010 A1
20100253309 Xi et al. Oct 2010 A1
20100266066 Takahashi Oct 2010 A1
20100301947 Fujioka et al. Dec 2010 A1
20100308654 Chen Dec 2010 A1
20100311365 Vinayak et al. Dec 2010 A1
20100321127 Watanabe et al. Dec 2010 A1
20110018626 Kojima Jan 2011 A1
20110058601 Kim et al. Mar 2011 A1
20110084760 Guo et al. Apr 2011 A1
20110148375 Tsuji Jun 2011 A1
20110234182 Wilson Sep 2011 A1
20110235827 Lesso et al. Sep 2011 A1
20110279180 Yamanouchi et al. Nov 2011 A1
20110298539 Drogi et al. Dec 2011 A1
20120025907 Koo et al. Feb 2012 A1
20120025919 Huynh Feb 2012 A1
20120034893 Baxter et al. Feb 2012 A1
20120049953 Khlat Mar 2012 A1
20120068767 Henshaw et al. Mar 2012 A1
20120133299 Capodivacca et al. May 2012 A1
20120139516 Tsai et al. Jun 2012 A1
20120154035 Hongo et al. Jun 2012 A1
20120154054 Kaczman et al. Jun 2012 A1
20120170334 Menegoli et al. Jul 2012 A1
20120176196 Khlat Jul 2012 A1
20120194274 Fowers et al. Aug 2012 A1
20120200354 Ripley et al. Aug 2012 A1
20120236444 Srivastava et al. Sep 2012 A1
20120244916 Brown et al. Sep 2012 A1
20120299647 Honjo et al. Nov 2012 A1
20130034139 Khlat et al. Feb 2013 A1
20130094553 Paek et al. Apr 2013 A1
20130169245 Kay et al. Jul 2013 A1
20130214858 Tournatory et al. Aug 2013 A1
20130229235 Ohnishi Sep 2013 A1
20130307617 Khlat et al. Nov 2013 A1
20130328613 Kay et al. Dec 2013 A1
20140009200 Kay et al. Jan 2014 A1
20140009227 Kay et al. Jan 2014 A1
Foreign Referenced Citations (19)
Number Date Country
0755121 Jan 1997 EP
1492227 Dec 2004 EP
1569330 Aug 2005 EP
2214304 Aug 2010 EP
2244366 Oct 2010 EP
2372904 Oct 2011 EP
2462204 Feb 2010 GB
2465552 May 2010 GB
2484475 Apr 2012 GB
0048306 Aug 2000 WO
2004002006 Dec 2003 WO
2004082135 Sep 2004 WO
2005013084 Feb 2005 WO
2006021774 Mar 2006 WO
2006073208 Jul 2006 WO
2007107919 Sep 2007 WO
2007149346 Dec 2007 WO
2012151594 Nov 2012 WO
2012172544 Dec 2012 WO
Non-Patent Literature Citations (128)
Entry
Wu, Patrick Y. et al., “A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifiers with 9% Efficiency Improvement,” IEEE Journal of Solid-State Circuits, vol. 45, No. 12, Dec. 2010, pp. 2543-2556.
Yousefzadeh, Vahid et al., “Band Separation and Efficiency Optimization in Linear-Assisted Switching Power Amplifiers,” 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, pp. 1-7.
International Preliminary Report on Patentability for PCT/US2012/040317, mailed Dec. 12, 2013, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/531,719, mailed Dec. 30, 2013, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/022,940, mailed Dec. 20, 2013, 5 pages.
International Search Report and Written Opinion for PCT/US2013/052277, mailed Jan. 7, 2014, 14 pages.
Choi, J. et al., “A New Power Management IC Architecture for Envelope Tracking Power Amplifier,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, No. 7, Jul. 2011, pp. 1796-1802.
Cidronali, A. et al., “A 240W Dual-Band 870 and 2140 MHz Envelope Tracking GaN PA Designed by a Probability Distribution Conscious Approach,” IEEE MTT-S International Microwave Symposium Digest, Jun. 5-10, 2011, 4 pages.
Dixon, N., “Standardisation Boosts Momentum for Envelope Tracking,” Microwave Engineering, Europe, Apr. 20, 2011, 2 pages, http://www.mwee.com/en/standardisation-boosts-momentum-for-envelope-tracking.html? cmp—ids=71&news—ids=222901746.
Hekkala, A. et al., “Adaptive Time Misalignment Compensation in Envelope Tracking Amplifiers,” 2008 IEEE International Symposium on Spread Spectrum Techniques and Applications, Aug. 2008, pp. 761-765.
Kim et al., “High Efficiency and Wideband Envelope Tracking Power Amplifiers with Sweet Spot Tracking,” 2010 IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, pp. 255-258.
Kim, N. et al, “Ripple Feedback Filter Suitable for Analog/Digital Mixed-Mode Audio Amplifier for Improved Efficiency and Stability,” 2002 IEEE Power Electronics Specialists Conference, vol. 1, Jun. 23, 2002, pp. 45-49.
Knutson, P, et al., “An Optimal Approach to Digital Raster Mapper Design,” 1991 IEEE International Conference on Consumer Electronics held Jun. 5-7, 1991, vol. 37, Issue 4, published Nov. 1991, pp. 746-752.
Le, Hanh-Phuc et al., “A 32nm Fully Integrated Reconfigurable Switched-Capacitor DC-DC Convertor Delivering 0.55W/mmΛ2 at 81% Efficiency,” 2010 IEEE International Solid State Circuits Conference, Feb. 7-11, 2010, pp. 210-212.
Li, Y. et al., “A Highly Efficient SiGe Differential Power Amplifier Using an Envelope-Tracking Technique for 3GPP LTE Applications,” 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct. 4-6, 2010, pp. 121-124.
Sahu, B. et al., “Adaptive Power Management of Linear RF Power Amplifiers in Mobile Handsets—An Integrated System Design Approach,” submission for IEEE Asia Pacific Microwave Conference, Mar. 2004, 4 pages.
Unknown, “Nujira Files 100th Envelope Tracking Patent,” CS: Compound Semiconductor, Apr. 11, 2011, 1 page, http://www.compoundsemiconductor.net/csc/news-details.php?cat=news&id=1973333&key=Nujira%20Files%20100th%20Envelope%20Tracking%20Patent&type=n.
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Feb. 1, 2008, 17 pages.
Final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Jul. 30, 2008, 19 pages.
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Nov. 26, 2008, 22 pages.
Final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed May 4, 2009, 20 pages.
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Feb. 3, 2010, 21 pages.
Notice of Allowance for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Jun. 9, 2010, 7 pages.
International Search Report for PCT/US06/12619 mailed May 8, 2007, 2 pages.
Extended European Search Report for application 06740532.4 mailed Dec. 7, 2010, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/112,006 mailed Apr. 5, 2010, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/112,006 mailed Jul. 19, 2010, 6 pages.
Non-final Office Action for U.S. Appl. No. 13/089,917 mailed Nov. 23, 2012, 6 pages.
International Search Report for PCT/US11/033037, mailed Aug. 9, 2011, 10 pages.
International Preliminary Report on Patentability for PCT/US2011/033037 mailed Oct. 23, 2012, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/188,024, mailed Feb. 5, 2013, 8 pages.
International Search Report for PCT/US2011/044857, mailed Oct. 24, 2011, 10 pages.
International Preliminary Report on Patentability for PCT/US2011/044857 mailed Mar. 7, 2013, 6 pages.
Non-final Office Action for U.S. Appl. No. 13/218,400 mailed Nov. 8, 2012, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/218,400 mailed Apr. 11, 2013, 7 pages.
International Search Report for PCT/US11/49243, mailed Dec. 22, 2011, 9 pages.
International Preliminary Report on Patentability for PCT/US11/49243 mailed Nov. 13, 2012, 33 pages.
International Search Report for PCT/US2011/054106 mailed Feb. 9, 2012, 11 pages.
International Search Report for PCT/US2011/061007 mailed Aug. 16, 2012, 16 pages.
Non-Final Office Action for U.S. Appl. No. 13/297,470 mailed May 8, 2013, 15 pages.
International Search Report for PCT/US2011/061009 mailed Feb. 8, 2012, 14 pages.
International Search Report for PCT/US2012/023495 mailed May 7, 2012, 13 pages.
Non-final Office Action for U.S. Appl. No. 13/222,453 mailed Dec. 6, 2012, 13 pages.
Notice of Allowance for U.S. Appl. No. 13/222,453 mailed Feb. 21, 2013, 7 pages.
Invitation to Pay Additional Fees and Where Applicable Protest Fee for PCT/US2012/024124 mailed Jun. 1, 2012, 7 pages.
International Search Report for PCT/US2012/024124 mailed Aug. 24, 2012, 14 pages.
Notice of Allowance for U.S. Appl. No. 13/316,229 mailed Nov. 14, 2012, 9 pages.
International Search Report for PCT/US2011/064255 mailed Apr. 3, 2012, 12 pages.
International Search Report for PCT/US2012/40317 mailed Sep. 7, 2012, 7 pages.
International Search Report for PCT/US2012/046887 mailed Dec. 21, 2012, 12 pages.
Non-final Office Action for U.S. Appl. No. 13/222,484 mailed Nov. 8, 2012, 9 pages.
Final Office Action for U.S. Appl. No. 13/222,484 mailed Apr. 10, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2012/053654 mailed Feb. 15, 2013, 11 pages.
International Search Report and Written Opinion for PCT/US2012/062070, mailed Jan. 21, 2013, 12 pages.
International Search Report and Written Opinion for PCT/US2012/067230 mailed Feb. 21, 2013, 10 pages.
Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 25, 2013, 17 pages.
Notice of Allowance for U.S. Appl. No. 14/022,858, mailed Oct. 25, 2013, 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/550,049, mailed Nov. 25, 2013, 6 pages.
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Nov. 5, 2013, 6 pages.
Examination Report for European Patent Application No. 11720630, mailed Aug. 16, 2013, 5 pages.
Lie, Donald Y.C. et al., “Design of Highly-Efficient Wideband RF Polar Transmitters Using Envelope-Tracking (ET) for Mobile WiMAX/Wibro Applications,” IEEE 8th International Conference on ASIC (ASCION), Oct. 20-23, 2009, pp. 347-350.
Lie, Donald Y.C. et al., “Highly Efficient and Linear Class E SiGe Power Amplifier Design,” 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Oct. 23-26, 2006, pp. 1526-1529.
Non-Final Office Action for U.S. Appl. No. 13/367,973, mailed Sep. 24, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/423,649, mailed Aug. 30, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/316,229, mailed Aug. 29, 2013, 8 pages.
Quayle Action for U.S. Appl. No. 13/531,719, mailed Oct. 10, 2013, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/602,856, mailed Sep. 24, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/188,024, mailed Jun. 18, 2013, 7 pages.
International Preliminary Report on Patentability for PCT/US2011/054106 mailed Apr. 11, 2013, 8 pages.
International Preliminary Report on Patentability for PCT/US2011/061007 mailed May 30, 2013, 11 pages.
International Preliminary Report on Patentability for PCT/US2011/061009 mailed May 30, 2013, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/423,649, mailed May 22, 2013, 7 pages.
Advisory Action for U.S. Appl. No. 13/222,484, mailed Jun. 14, 2013, 3 pages.
International Preliminary Report on Patentability for PCT/US2011/064255, mailed Jun. 20, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/343,840, mailed Jul. 1, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/363,888, mailed Jul. 18, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/222,453, mailed Aug. 22, 2013, 8 pages.
International Preliminary Report on Patentability for PCT/US2012/024124, mailed Aug. 22, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/550,060, mailed Aug. 16, 2013, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/222,484, mailed Aug. 26, 2013, 8 pages.
International Preliminary Report on Patentability for PCT/US2012/023495, mailed Aug. 15, 2013, 10 pages.
Notice of Allowance for U.S. Appl. No. 13/297,490, mailed Feb. 27, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Feb. 20, 2014, 16 pages.
Notice of Allowance for U.S. Appl. No. 13/550,049, mailed Mar. 6, 2014, 5 pages.
International Preliminary Report on Patentability for PCT/US2012/046887, mailed Jan. 30, 2014, 8 pages.
International Preliminary Report on Patentability for PCT/US2012/053654, mailed Mar. 13, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/661,552, mailed Feb. 21, 2014, 5 pages.
International Search Report and Written Opinion for PCT/US2013/065403, mailed Feb. 5, 2014, 11 pages.
Examination Report for European Patent Application No. 11720630.0 issued Mar. 18, 2014, 4 pages.
Notice of Allowance for U.S. Appl. No. 14/022,858 mailed May 27, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/367,973 mailed Apr. 25, 2014, 5 pages.
Non-Final Office Action for U.S. Appl. No. 13/647,815 mailed May 2, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/689,883 mailed Mar. 27, 2014, 13 pages.
International Preliminary Report on Patentability for PCT/US2012/062070 mailed May 8, 2014, 8 pages.
International Search Report and Written Opinion for PCT/US2012/062110 issued Apr. 8, 2014, 12 pages.
International Preliminary Report on Patentability for PCT/US2012/062110 mailed May 8, 2014, 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/684,826 mailed Apr. 3, 2014, 5 pages.
Notice of Allowance for U.S. Appl. No. 14/022,940, mailed Jun. 10, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/714,600 mailed May 9, 2014, 14 pages.
Non-Final Office Action for U.S. Appl. No. 13/951,976 mailed Apr. 4, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 12/836,307 mailed May 5, 2014, 6 pages.
International Search Report and Written Opinion for PCT/US2014/012927, mailed Sep. 30, 2014, 11 pages.
International Search Report and Written Opinion for PCT/US2014/028178, mailed Sep. 30, 2014, 17 pages.
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Sep. 25, 2014, 5 pages.
Advisory Action for U.S. Appl. No. 13/297,470, mailed Sep. 19, 2014, 3 pages.
Notice of Allowance for U.S. Appl. No. 13/367,973, mailed Sep. 15, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/647,815, mailed Sep. 19, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/661,227, mailed Sep. 29, 2014, 24 pages.
Notice of Allowance for U.S. Appl. No. 13/684,826, mailed Sep. 8, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/714,600, mailed Oct. 15, 2014, 13 pages.
Non-Final Office Action for U.S. Appl. No. 13/747,725, mailed Oct. 7, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 20, 2014, 22 pages.
Notice of Allowance for U.S. Appl. No. 13/914,888, mailed Oct. 17, 2014, 10 pages.
Notice of Allowance for U.S. Appl. No. 14/072,140, mailed Aug. 27, 2014, 8 pages.
Non-Final Office Action for U.S. Appl. No. 14/072,225, mailed Aug. 15, 2014, 4 pages.
Non-Final Office Action for U.S. Appl. No. 13/486,012, mailed Jul. 28, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/548,283, mailed Sep. 3, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/689,883, mailed Aug. 27, 2014, 12 pages.
Notice of Allowance for U.S. Appl. No. 13/661,552, mailed Jun. 13, 2014, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/690,187, mailed Sep. 3, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/684,826, mailed Jul. 18, 2014, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/782,142, mailed Sep. 4, 2014, 6 pages.
Hassan, Muhammad, et al., “A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications,” IEEE Journal of Solid-State Circuits, vol. 47, No. 5, May 1, 2012, pp. 1185-1198.
Hoversten, John, et al, “Codesign of PA, Supply, and Signal Processing for Linear Supply-Modulated RF Transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 6, Jun. 2012, pp. 2010-2020.
European Search Report for Patent Application No. 14162682.0, issued Aug. 27, 2014, 7 pages.
International Preliminary Report on Patentability and Written Opinion for PCT/US2012/067230, mailed Jun. 12, 2014, 7 pages.
International Search Report and Written Opinion for PCT/US2014/028089, mailed Jul. 17, 2014, 10 pages.
Invitation to Pay Additional Fees and Partial International Search Report for PCT/US2014I028178, mailed Jul. 24, 2014, 7 pages.
Related Publications (1)
Number Date Country
20130141169 A1 Jun 2013 US
Provisional Applications (1)
Number Date Country
61565751 Dec 2011 US