1. Field of the Invention
The present invention relates in general to communication systems and components. More particularly the present invention is directed to antennas and antenna arrays employed in wireless communications systems.
2. Description of the Prior Art and Related Background Information
Modern wireless antenna implementations generally include a plurality of radiating elements that may be arranged over a ground plane defining a radiated (and received) signal beam width and azimuth scan angle. Azimuth antenna beam width can be advantageously modified by varying amplitude and phase of an RF signal applied to respective radiating elements. Azimuth antenna beam width has been conventionally defined by Half Power Beam Width (HPBW) of the azimuth beam relative to a bore sight of such antenna array. In such antenna array structure radiating element positioning is critical to the overall beam width control as such antenna systems rely on accuracy of amplitude and phase angle of the RF signal supplied to each radiating element. This places severe constraints on the tolerance and accuracy of a mechanical phase shifter to provide the required signal division between various radiating elements over various azimuth beam width settings.
Consequently, there is a need to provide a simpler method to adjust antenna beam width control.
In a first aspect the present invention provides an antenna for a wireless network, comprising a first reflector having a first plurality of radiators coupled thereto and a second reflector having a second plurality of radiators coupled thereto, wherein the first and second plurality of radiators are arranged in a generally vertical direction with alternate radiators alternately configured on the first and second reflectors, and wherein the first and second reflectors are rotatable in opposite angular directions in the azimuth to alter signal beam width.
In a preferred embodiment of the antenna the first and second reflectors are partially overlapping with an interlocking comb shape and provide a generally rectangular shape in combination. Alternate radiators are configured in notched portions of the opposite comb shaped reflector. The first and second plurality of radiators may comprise patch antenna radiating elements. The first and second reflectors are preferably generally planar. The first and second reflectors are preferably movable through an angular range of between 0 degrees and about 40 degrees and half power beam width is variable between about 36 and 120 degrees. The first and second plurality of radiators are preferably offset from a center axis of the vertical arrangement in opposite directions by a total distance d in the azimuth when the reflectors are at a 0 degree relative angle. The first and second reflectors are preferably offset from a rotation axis by an amount Δd, where Δd is substantially smaller than d. Preferably Δd is also substantially smaller than the operational wavelength of the antenna. The antenna preferably further comprises a shaft extending in the vertical direction and the first and second reflectors are coupled to the shaft.
In another aspect the present invention provides an antenna array, comprising a first reflector structure having plural reflector panels spaced apart in a vertical direction, a first plurality of radiators coupled to the plural reflector panels of the first reflector structure and configured in pairs on each panel, wherein the radiators in each pair are spaced apart in an azimuth direction, a second reflector structure having plural reflector panels spaced apart in the vertical direction and alternating with the plural reflector panels of the first reflector structure, and a second plurality of radiators coupled to the plural reflector panels of the second reflector structure and configured in pairs on each panel, wherein the radiators in each pair are spaced apart in the azimuth direction. The first and second plurality of radiators are arranged in two columns extending in the vertical direction when the plural panels of the first and second reflector structures are in a first generally aligned configuration, and the plural panels of the first and second reflector structures are movable together in opposite angular directions in the azimuth to alter signal beam width of the antenna array.
In a preferred embodiment of the antenna array the plural panels of the first and second reflector structures form a generally X shaped overall configuration when moved in opposite directions away from the aligned configuration. The plural panels of the first and second reflector structures are planar and generally rectangular in shape. The array has a relatively narrow beam width in the first generally aligned configuration and a beam width which increases with the angular separation of the first and second reflector structures in the azimuth. The first and second reflector structures are rotatable in opposite angular directions in the azimuth preferably through a range of about 40 degrees and the half power beam width ranges between about 38 and 102 degrees. The antenna array may preferably further comprise a shaft extending in the vertical direction and the plural panels of the first and second reflector structures are coupled to the shaft. The two columns of radiators formed when the plural panels of the first and second reflector structures are in a first generally aligned configuration are spaced apart a distance d, the first and second reflector panels are preferably offset from a rotation axis by an amount Δd, and Δd is preferably substantially smaller than d. The first and second plurality of radiators may comprise patch radiating elements.
In another aspect the present invention provides a method of adjusting signal beam width in a wireless antenna having a plurality of radiators configured on plural separate reflector panels. The method comprises providing the reflector panels in a first configuration to provide a first signal beam width and rotating the panels in opposite angular directions in the azimuth to a second configuration to provide a second signal beam width.
In a preferred embodiment of the method the plural panels comprise first and second groups of panels movable together and plural radiators are configured on each panel.
Further features and aspects of the invention are provided in the following detailed description.
The present invention provides an antenna array with mechanical azimuth beam width control. In the illustrated embodiments beam width can be continuously augmented through on-axis rotation of a single-column or a dual-column linear array.
The nominal distance of center offset between the alternate elements in the azimuth direction (d), i.e., the distance at zero rotation angle, is important to the overall azimuth pattern of the antenna. A larger offset distance allows more beam width variation in the azimuth direction. However, as the distance increases, the side lobe level in the azimuth also increases. The maximum offset distance is therefore limited by the maximum allowed side-lobe-level. This also limits the maximum achievable directivity of the single column array. The rotation angle (α) also affects this distance creating an instantaneous spacing s (
The foregoing description of preferred embodiments is presented for purposes of illustration and description. Furthermore, the description is not intended to limit the invention to the form disclosed herein. Accordingly, variants and modifications consistent with the following teachings, and skill and knowledge of the relevant art, are within the scope of the present invention. The embodiments described herein are further intended to explain modes known for practicing the invention disclosed herewith and to enable others skilled in the art to utilize the invention in equivalent, or alternative embodiments and with various modifications considered necessary by the particular application(s) or use(s) of the present invention.
The present application claims priority under 35 USC section 119(e) to U.S. provisional patent application Ser. No. 61/004,525 filed Nov. 28, 2007, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61004525 | Nov 2007 | US |