The human visual system has limited spatio-temporal sensitivity, but many signals that fall below its sensitivity threshold can be informative. For example, human skin color varies slightly corresponding to blood circulation. This variation, while invisible to the naked eye, can be exploited to extract pulse rate or to visualize blood flow. Similarly, motion with low spatial amplitude, while hard or impossible for humans to see, can be magnified to reveal interesting mechanical behavior.
In one embodiment, a method of amplifying temporal variation in at least two images comprises examining pixel values of the at least two images. The temporal variation of the pixel values between the at least two images can be below a particular threshold. The method can further include applying signal processing to the pixel values.
In another embodiment, applying signal processing can amplify the variations of the pixel values between the at least two images. The signal processing can be temporal processing. The temporal processing can be a bandpass filter or be performed by a bandpass filter. The bandpass filter can be configured to analyze frequencies over time. Applying signal processing can include spatial processing. Spatial processing can remove noise.
In another embodiment, the method can include visualizing a pattern of flow of blood in a body shown in the at least two images.
In another embodiment, a system for amplifying temporal variation in at least two images can include a pixel examination module configured to examine pixel values of the at least two images. The temporal variation of the pixel values between the at least two images can be below a particular threshold. The system can further include a signal processing module configured to apply signal processing to the pixel values.
The signal processing module can be further configured to amplify variations of the pixel values between the at least two images. The signal processing module can be further configured to employ temporal processing. The temporal processing can be a bandpass filter or performed by a bandpass filter. The bandpass filter can be configured to analyze frequencies over time. The signal processing module can be further configured to perform spatial processing. The spatial processing can remove noise.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.
The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.
A description of example embodiments of the invention follows.
The method described herein (a) reveals temporal variations in videos that are difficult or impossible to see with the naked eye and (b) displays the temporal variations in an indicative manner. The method, called Eulerian Video Magnification, inputs a standard video sequence, applies spatial decomposition, and applies temporal filtering to the frames. The resulting signal is then amplified to reveal hidden information. This method can, for example, visualize flow of blood filling a face in a video and also amplify and reveal small motions. The method can run in real time to show phenomena occurring at temporal frequencies selected by the user.
The success of these tools motivates the development of new techniques to reveal invisible signals in videos. A combination of spatial and temporal processing of videos can amplify subtle variations that reveal important aspects of the world.
The method described herein considers a time series of color values at any spatial location (e.g., a pixel) and amplifies variation in a given temporal frequency band of interest. For example, in
The temporal filtering approach not only amplifies color variation, but can also reveal low-amplitude motion. For example, the method can enhance the subtle motions around the chest of a breathing baby. The method's mathematical analysis employs a linear approximation related to the brightness constancy assumption used in optical flow formulations. The method also derives the conditions under which this approximation holds. This leads to a multiscale approach to magnify motion without feature tracking or motion estimation.
Previous attempts have been made to unveil imperceptible motions in videos. For example, a method, described in Liu et al. 2005, analyzes and amplifies subtle motions and visualizes deformations that are otherwise invisible. Another method, described in Wang et al. 2006, proposes using a Cartoon Animation Filter to create perceptually appealing motion exaggeration. These approaches follow a Lagrangian perspective, in reference to fluid dynamics where the trajectory of particles is tracked over time. As such, they rely on accurate motion estimation, which is computationally expensive and difficult to make artifact-free, especially at regions of occlusion boundaries and complicated motions. Moreover, the method of Liu et al. 2005 shows that additional techniques, including motion segmentation and image in-painting, are required to produce good quality synthesis. This increases the complexity of the algorithm further.
In contrast, the Eulerian perspective observes properties of a voxel of fluid, such as pressure and velocity, which evolve over time. The method studies and amplifies the variation of pixel values over time, in a spatially-multiscale manner. The Eulerian approach to motion magnification does not explicitly estimate motion, but rather exaggerates motion by amplifying temporal color changes at fixed positions. The method employs differential approximations that form the basis of optical flow algorithms.
Temporal processing has been used previously to extract invisible signals, such as in Poh et al. 2010 (hereinafter “Poh”) and to smooth motions, such as in Fuchs et al. 2010 (hereinafter “Fuchs”). For example, Poh describes extracting a heart rate from a video of a face based on the temporal variation of the skin color, which is normally invisible to the human eye. Poh focuses on extracting a single number, whereas the method described herein employs localized spatial pooling and bandpass filtering to extract and reveal visually the signal corresponding to the pulse. This primal domain analysis allows amplification and visualization of the pulse signal at each location on the face. This has important potential monitoring and diagnostic applications to medicine, where, for example, the asymmetry in facial blood flow can be a symptom of arterial problems.
Fuchs uses per-pixel temporal filters to dampen temporal aliasing of motion in videos. Fuchs also describes the high-pass filtering of motion, but mostly for non-photorealistic effects and for large motions. In contrast, the method described herein strives to make imperceptible motions visible using a multiscale approach. The method described herein excels at amplifying small motions, in one embodiment.
First, nearly invisible changes in a dynamic environment can be revealed through Eulerian spatio-temporal processing of standard monocular video sequences. Moreover, for a range of amplification values that is suitable for various applications, explicit motion estimation is not required to amplify motion in natural videos. The method is robust and runs in real time. Second, an analysis of the link between temporal filtering and spatial motion is provided and shows that the method is best suited to small displacements and lower spatial frequencies. Third, a single framework can amplify both spatial motion and purely temporal changes (e.g., a heart pulse) and can be adjusted to amplify particular temporal frequencies—a feature which is not supported by Lagrangian methods. Fourth, we analytically and empirically compare Eulerian and Lagrangian motion magnification approaches under different noisy conditions. To demonstrate our approach, we present several examples where our method makes subtle variations in a scene visible.
Space-Time Video Processing
The method as illustrated by
The method then performs temporal processing on each spatial band. The method considers the time series corresponding to the value of a pixel in a frequency band and applies a bandpass filter to extract the frequency bands of interest. As one example, the method may select frequencies within the range of 0.4-4 Hz, corresponding to 24-240 beats per minute, if the user wants to magnify a pulse. If the method extracts the pulse rate, it can employ a narrow frequency band around that value. The temporal processing is uniform for all spatial levels and for all pixels within each level. The method then multiplies the extracted bandpassed signal by a magnification factor α. This factor can be specified by the user, and may be attenuated automatically according to guidelines described later in this application. Next, the method adds the magnified signal to the original signal and collapses the spatial pyramid to obtain the final output. Since natural videos are spatially and temporally smooth, and since the filtering is performed uniformly over the pixels, the method implicitly maintains spatiotemporal coherency of the results.
3 Eulerian Motion Magnification
The present method can amplify small motion without tracking motion as in Lagrangian methods. Temporal processing produces motion magnification, shown using an analysis that relies on the first-order Taylor series expansions common in optical flow analyses.
3.1 First-Order Motion
To explain the relationship between temporal processing and motion magnification, the case of a 1D signal undergoing translational motion is informative. This analysis generalizes to locally-translational motion in 2D.
Function I(x, t) denotes the image intensity at position x and time t. Since the image undergoes translational motion, can be expressed as the observed intensities with respect to a displacement function δ(t), I(x, t)=ƒ(x+δ(t)) and such that I(x, 0)=ƒ(x). The goal of motion magnification is to synthesize the signal
Î(x,t)=ƒ(x+(1+α)δ(t)) (1)
for some amplification factor α. Assuming the image can be approximated by a first-order Taylor series expansion, the image at time t, ƒ(x+δ(t)) in a first-order Taylor expansion about x, can be written as
Function B(x, t) is the result of applying a broadband temporal bandpass filter to I(x, t) at every position x (picking out everything except ƒ(x) in Eq. 2). For now, assume the motion signal, δ(t), is within the passband of the temporal bandpass filter. Then,
The method then amplifies that bandpass signal by α and adds it back to I(x, t), resulting in the processed signal
Ĩ(x,t)=I(x,t)+αB(x,t) (4)
Combining Eqs. 2, 3, and 4 results in
Assuming the first-order Taylor expansion holds for the amplified larger perturbation, (1+α)δ(t), the amplification of the temporally bandpassed signal can be related to motion magnification. The processed output is simply
Ĩ(x,t)=ƒ(x+(1+α)δ(t)). (6)
This shows that the processing magnifies motions—the spatial displacement δ(t) of the local image ƒ(x) at time t has been amplified to a magnitude of (1+α).
This process is illustrated for a single sinusoid in
For completeness, in a more general case, δ(t) is not entirely within the passband of the temporal filter, δk(t), indexed by k, and represents the different temporal spectral components of δ(t). Each δk(t) is attenuated by the temporal filtering by a factor λk. This results in a bandpassed signal,
(compare with Eq. 3). Because of the multiplication in Eq. 4, this temporal frequency dependent attenuation can equivalently be interpreted as a frequency-dependent motion magnification factor, αk=λkα.
3.2 Bounds
In practice, the assumptions in Sect. 3.1 hold for smooth images and small motions. For quickly changing image functions (i.e., high spatial frequencies), ƒ(x), the first-order Taylor series approximations becomes inaccurate for large values of the perturbation, 1+αδ(t), which increases both with larger magnification α and motion δ(t).
As a function of spatial frequency, ω, the process derives a guide for how large the motion amplification factor, α, can be given the observed motion δ(t). For the processed signal, Ĩ(x, t) to be approximately equal to the true magnified motion, Î(x, t), the process seeks the conditions under which
is the true translation. For
for the left plot, and
for the right plot, showing the mild, then severe, artifacts introduced in the motion magnification from exceeding the bound on (1+α) by factors of 2 and 4, respectively.
Let ƒ(x)=cos(ωx) for spatial frequency ω, and denote β=1+α. The process requires that
cos(ωx)−βωδ(t)sin(ωx)≈cos(ωx+βωδ(t)) (9)
Using the addition law for cosines,
cos(ωx)−βωδ(t)sin(ωx)=cos(ωx)cos(βωδ(t))−sin(ωx)sin(βωδ(t)) (10)
Hence, the following should approximately hold
cos(βωδ(t))≈1 (11)
sin(βωδ(t))≈βδ(t)ω (12)
The small angle approximations of Eqs. (11) and (12) hold to within 10% for
(the sine term is the leading approximation which gives
In terms of the spatial wavelength,
of the moving signal, this gives
Eq. 13 above provides the sought after guideline, giving the largest motion amplification factor, α, compatible with accurate motion magnification of a given video motion δ(t) and image structure spatial wavelength, λ.
This suggests a scale-varying process: use a specified a magnification factor over some desired band of spatial frequencies, then scale back for the high spatial frequencies (found from Eq. 13 or specified by the user) where amplification gives undesirable artifacts.
Testing results can be generated using non-optimized MATLAB code on a machine with a six-core processor and 32 GB RAM. The computation time per video is on the order of a few minutes. A separable binomial filter of size five constructs the video pyramids. A prototype application allows users to reveal subtle changes in real-time from live video feeds, essentially serving as a microscope for temporal variations. It is implemented in C++, can be CPU-based, and processes 640×480 videos at 45 frames per second on a standard laptop, but can be further accelerated by utilizing GPUs.
To process an input video by Eulerian video magnification, a user takes four steps: (1) select a temporal bandpass filter; (2) select an amplification factor, α; (3) select a spatial frequency cutoff (specified by spatial wavelength, λc) beyond which an attenuated version of α is used; and (4) select the form of the attenuation for α—either force α to zero for all λ<λc, or linearly scale a down to zero. The frequency band of interest can be chosen automatically in some cases, but it is often important for users to be able to control the frequency band corresponding to their application. In our real-time application, the amplification factor and cutoff frequencies are all customizable by the user.
The process first selects the temporal bandpass filter to pull out the motions or signals to be amplified (step 1 above). The choice of filter is generally application dependent. For motion magnification, a filter with a broad passband is preferred; for color amplification of blood flow, a narrow passband produces a more noise-free result.
The process selects the desired magnification value, α, and spatial frequency cutoff, λc (steps 2 and 3). While Eq. 13 can be a guide, in practice, a user can try various α and λc values to achieve a desired result. The user can select a higher a that violates the bound to exaggerate specific motions or color changes at the cost of increasing noise or introducing more artifacts. In some cases, the user can account for color clipping artifacts by attenuating the chrominance components of each frame. The method achieves this by doing all the processing in the YIQ space. The user can attenuate the chrominance components, I and Q, before conversion to the original color space.
For human pulse color amplification, where emphasizing low spatial frequency changes is essential, the process may force α=0 for spatial wavelengths below λc. For motion magnification videos, the user can choose to use a linear ramp transition for α (step 4).
The ideal filters, the frequency response of which is illustrated by graphs 900 and 910 of
The method was evaluated for color amplification using a few videos: two videos of adults with different skin colors and one of a newborn baby. An adult subject with lighter complexion is shown in face (e.g.,
baby2 is a video of a newborn recorded in situ at the Nursery Department at Winchester Hospital in Massachusetts. In addition to the video, ground truth vital signs from a hospital grade monitor are obtained. This information confirms the accuracy of the heart rate estimate and verifies that the color amplification signal extracted from our method matches the photoplethysmogram, an optically obtained measurement of the perfusion of blood to the skin, as measured by the monitor.
To evaluate the method for motion magnification, several different videos are tested: face (
For videos where revealing broad, but subtle motion is desired, the method employs temporal filters with a broader passband. For example, for the face2 video, the method employs a second-order IIR filter with slow roll-off regions. By changing the temporal filter, the method magnifies the motion of the head rather than amplifying the change in the skin color. Accordingly, α=20; λc=80 are chosen to magnify the motion.
By using broadband temporal filters and setting α and λc according to Eq. 14, the method is able to reveal subtle motions, as in the camera and wrist videos. For the camera video, a camera with a sampling rate of 300 Hz records a Digital SLR camera vibrating while capturing photos at about one exposure per second. The vibration caused by the moving mirror in the SLR, though invisible to the naked eye, is revealed by our approach. To verify that the method amplifies the vibrations caused by the flipping mirror, a laser pointer is secured to the camera and a video of the laser light recorded, appearing at a distance of about four meters from the source. At that distance, the laser light visibly oscillated with each exposure, with the oscillations in sync with the magnified motions.
The method exaggerates visible yet subtle motion, as seen in the baby, face2, and subway videos. In the subway example the method amplified the motion beyond the derived bounds of where the first-order approximation holds to increase the effect and to demonstrate the algorithm's artifacts. Many testing examples contain oscillatory movements because such motion generally has longer duration and smaller amplitudes. However, the method can amplify non-periodic motions as well, as long as they are within the passband of the temporal bandpass filter. In shadow, for example, the method processes a video of the sun's shadow moving linearly, yet imperceptibly, to the human eye over 15 seconds. The magnified version makes it possible to see the change even within this short time period.
Finally, videos may contain regions of temporal signals that do not need amplification, or that, when amplified, are perceptually unappealing. Due to Eulerian processing, the user can manually restrict magnification to particular areas by marking them on the video.
Sensitivity to Noise. The amplitude variation of the signal of interest is often much smaller than the noise inherent in the video. In such cases direct enhancement of the pixel values do not reveal the desired signal. Spatial filtering can enhance these subtle signals. However, if the spatial filter applied is not large enough, the signal of interest is not be revealed, as in
Assuming that the noise is zero-mean white and wide-sense stationary with respect to space, spatial low pass filtering reduces the variance of the noise according to the area of the low pass filter. To boost the power of a specific signal (e.g., the pulse signal in the face) the spatial characteristics of the signal can estimate the spatial filter size.
Let the noise power level be σ2, and the prior signal power level over spatial frequencies be S(λ). An ideal spatial low pass filter has radius r such that the signal power is greater than the noise in the filtered frequency region. The wavelength cut off of such a filter is proportional to its radius, r, so the signal prior can be represented as S(r). The noise power σ2 can be estimated by examining pixel values in a stable region of the scene, from a gray card. Since the filtered noise power level, σ′2, is inversely proportional to r2, the radius r can be found with,
where k is a constant that depends on the shape of the low pass filter. This equation gives an estimate for the size of the spatial filter needed to reveal the signal at a certain noise power level.
Eulerian vs. Lagrangian Processing. Because the two methods take different approaches to motion—Lagrangian approaches explicitly track motions, while Eulerian approach does not—they can be used for complementary motion domains. Lagrangian approaches enhance motions of fine point features and support larger amplification factors, while the Eulerian method is better suited to smoother structures and small amplifications. The Eulerian method does not assume particular types of motions. The first-order Taylor series analysis can hold for general small 2D motions along general paths.
Appendix A provides estimates of the accuracy of the two approaches with respect to noise. Comparing the Lagrangian error, εL (Eq. 28), and the Eulerian error, εE (Eq. 30), both methods are equally sensitive to the temporal characteristics of the noise, nt, while the Lagrangian process has additional error terms proportional to the spatial characteristics of the noise, nx, due to the explicit estimation of motion (Eq. 26). The Eulerian error, on the other hand, grows quadratically with α, and is more sensitive to high spatial frequencies (Ixx). In general, this means that Eulerian magnification is preferable over Lagrangian magnification for small amplifications and larger noise levels.
This analysis is validated on a synthetic sequence of a 2D cosine oscillating at 2 Hz temporally and 0.1 pixels spatially with additive white spatiotemporal Gaussian noise of zero mean and standard deviation σ (
The method takes a video as input and exaggerates subtle color changes and imperceptible motions. To amplify motion, the method does not perform feature tracking or optical flow computation, but merely magnifies temporal color changes using spatio-temporal processing. This Eulerian based method, which temporally processes pixels in a fixed spatial region, successfully reveals informative signals and amplifies small motions in real-world videos.
Eulerian and Lagrangian Error
This section estimates the error in the Eulerian and Lagrangian motion magnification with respect to spatial and temporal noise. The derivation is performed again in 1D for simplicity, and can be generalized to 2D.
Both methods approximate the true motion-amplified sequence, Î(x, t), as shown in (1). First, analyze the error in those approximations on the clean signal, I(x, t).
Without noise: In the Lagrangian approach, the motion amplified sequence, ĨL(x, t), is achieved by directly amplifying the estimated motion, (t), with respect to the reference frame, I(x, 0)
Ĩ
L(x,t)=I(x+(1+α){tilde over (δ)}(t),0) (15)
In its simplest form, δ(t) can be estimated in a point-wise manner
where Ix(x, t)=∂I(x, t)/∂x and It(x, t)=I(x, t)−I(x, 0). From now on, the space (x) and time (t) indices are omitted when possible for brevity.
The error in the Lagrangian solution is directly determined by the error in the estimated motion, which is the second-order term in the brightness constancy equation,
The estimated motion, {tilde over (δ)}(t), is related to the true motion, δ(t), by
Plugging (18) in (15) and using a Taylor expansion of/about x+(1+α)δ(t) gives,
Subtracting (1) from (19), the error in the Lagrangian motion magnified sequence, εL, is
In the Eulerian approach, the magnified sequence, ÎE(x, t), is
similar to (4), using a two-tap temporal filter to compute It. Using a Taylor expansion of the true motion-magnified sequence, Î defined in (1), about x gives,
Using (17) and subtracting (1) from (22), the error in the Eulerian motion-magnified sequence, εE, is
With noise: Let I′(x, t) be the noisy signal, such that
I′(x,t)=I(x,t)+n(x,t) (24)
for additive noise n(x; t).
The estimated motion in the Lagrangian approach becomes
where nx=∂n/∂x and nt=n(x, t)−n(x, 0). Using a Taylor Expansion on (nt, nx) about (0, 0) (zero noise), and using (17), gives
Plugging (26) into (15), and using a Taylor expansion of I about x+(1+α)δ(t), gives
Using (18) again and subtracting (1), the Lagrangian error as a function of noise, εL(n), is
In the Eulerian approach, the noisy motion-magnified sequence becomes
Using (23) and subtracting (1), the Eulerian error as a function of noise, εE(n), is
If the noise is set to zero in (28) and (30), the resulting errors correspond to those derived for the non-noisy signal as shown in (20) and (23).
In this section Supplemental Information estimates of the error in the Eulerian and Lagrangian motion magnification results with respect to spatial and temporal noise are derived. The derivation is done again for the 1D case for simplicity, and can be generalized to 2D. The true motion-magnified sequence is
Both methods approximate the true motion-amplified sequence, Î(x, t) (Eq. 31). First, the error in those approximations on the clean signal, I(x, t), is analyzed.
1.1 Without Noise
In the Lagrangian approach, the motion-amplified sequence, ĨL(x, t), is achieved by directly amplifying the estimated motion, {tilde over (δ)}(t), with respect to the reference frame I(x, 0)
Ĩ
L(x,t)=I(x+(1+α){tilde over (δ)}(t),0) (32)
In its simplest form, δ(t) can be estimated using point-wise brightness constancy
where Ix(x, t)=∂I(x, t)/∂x and It(x, t)=I(x, t)−I(x, 0). From now on, space (x) and time (t) indices are omitted when possible for brevity.
The error in the Lagrangian solution is directly determined by the error in the estimated motion, which is the second-order term in the brightness constancy equation
So that the estimated motion {tilde over (δ)}(t) is related to the true motion, δ(t), as
Plugging (35) in (32),
Using first-order Taylor expansion of I about x+(1+α)δ(t),
Subtracting (31) from (37), the error in the Lagrangian motion-magnified sequence, εL, is
In the Eulerian approach, the magnified sequence, ÎE(x, t), is computed as
similar to Eq. 34, using a two-tap temporal filter to compute It.
Using Taylor expansion of the true motion-magnified sequence, Î (Eq. 1), about x, gives
Plugging (34) into (40)
Subtracting (39) from (41) gives the error in the Eulerian solution
1.2 With Noise
Let I′(x, t) be the noisy signal, such that
I′(x,t)=I(x,t)+n(x,t) (43)
for additive noise n(x, t).
In the Lagrangian approach, the estimated motion becomes
where nx=∂n/∂x and nt=n(x, t)−n(x, 0).
Using Taylor Expansion on (nt, nx) about (0, 0) (zero noise), and using (34) gives,
where the terms involving products of the noise components are ignored.
Plugging into Eq. (32), and using Taylor expansion of I about x+(1+α)δ(t) (t) gives
Arranging terms, and substituting (34) in (46),
(47)
Using (35) again and subtracting (31), the Lagrangian error as function of noise, εL(n), is
(48)
In the Eulerian approach, the noisy motion-magnified sequence becomes
Using (42) and subtracting (31), the Eulerian error as function of noise, εE(n), is
Notice that setting zero noise in (48) and (50), gives the corresponding errors derived for the non-noisy signal in (38) and (42).
Client computer(s)/devices 50 and server computer(s) 60 provide processing, storage, and input/output devices executing application programs and the like. Client computer(s)/devices 50 can also be linked through communications network 70 to other computing devices, including other client devices/processes 50 and server computer(s) 60. Communications network 70 can be part of a remote access network, a global network (e.g., the Internet), a worldwide collection of computers, Local area or Wide area networks, and gateways that currently use respective protocols (TCP/IP, Bluetooth, etc.) to communicate with one another. Other electronic device/computer network architectures are suitable.
In one embodiment, the processor routines 92 and data 94 are a computer program product (generally referenced 92), including a computer readable medium (e.g., a removable storage medium such as one or more DVD-ROM's, CD-ROM's, diskettes, tapes, etc.) that provides at least a portion of the software instructions for the invention system. Computer program product 92 can be installed by any suitable software installation procedure, as is well known in the art. In another embodiment, at least a portion of the software instructions may also be downloaded over a cable, communication and/or wireless connection. In other embodiments, the invention programs are a computer program propagated signal product 107 embodied on a propagated signal on a propagation medium (e.g., a radio wave, an infrared wave, a laser wave, a sound wave, or an electrical wave propagated over a global network such as the Internet, or other network(s)). Such carrier medium or signals provide at least a portion of the software instructions for the present invention routines/program 92.
In alternate embodiments, the propagated signal is an analog carrier wave or digital signal carried on the propagated medium. For example, the propagated signal may be a digitized signal propagated over a global network (e.g., the Internet), a telecommunications network, or other network. In one embodiment, the propagated signal is a signal that is transmitted over the propagation medium over a period of time, such as the instructions for a software application sent in packets over a network over a period of milliseconds, seconds, minutes, or longer. In another embodiment, the computer readable medium of computer program product 92 is a propagation medium that the computer system 50 may receive and read, such as by receiving the propagation medium and identifying a propagated signal embodied in the propagation medium, as described above for computer program propagated signal product.
Generally speaking, the term “carrier medium” or transient carrier encompasses the foregoing transient signals, propagated signals, propagated medium, storage medium and the like.
While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This invention was made with government support under 1111415 from the National Science Foundation. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
Parent | 13607173 | Sep 2012 | US |
Child | 13850717 | US | |
Parent | 13707451 | Dec 2012 | US |
Child | 13607173 | US |