The present invention relates generally to cutting shrink tubing that is produced on expansion equipment, and, more particularly, relates to cutting such tubing to a desired precision length for catheter applications while avoiding the problem of curvature created by storing tubing on a spool.
Fluorinated ethylene propylene (FEP) shrink tubing is a key material consumed in the production of guided or reinforced catheters. The production of FEP tubing to its ready to use state, on a spool, involves heating and pressurization of FEP tubing in a continuous process. The tubing is provided on a first spool, and to provide it in a state for use in catheters, it is internally pressurized with nitrogen and moved through an expander where it is expanded radially and cooled rapidly. The tubing that emerges from the expander is then collected on a second spool until the tubing on the first/supply spool is all processed.
The problem with spooling up the output tubing is that the tubing relaxes on the spool and adopts the curvature of the spool. The curved tubing needs to be straightened before it can be used in the production of catheters. Standard cut to length equipment currently available uses pinch rollers or rolling belts to squeeze and maintain pressure in the expanded tubing while conveying the tubing before cutting. As a result, this flattening of the tubing by the pinch rollers produces two seam edges along the tubing that adversely affects its performance as shrink tubing in the catheter production process.
Therefore, a need exists to overcome the problems with the prior art as discussed above.
In accordance with some embodiments of the inventive disclosure, there is provided a linear cut to length tubing cutting system that includes a first track and a second track, wherein the first track and the second track are parallel to each other. The system also includes a first actuator group disposed on the first track, a second actuator group disposed on the second track, wherein the first and second actuator groups are movable, forward and rearward, on their respective tracks. Each actuator group having, from front to rear, a holding clamp, a cutting tool, and a sealing clamp; and wherein the first and second actuator groups are alternately moved forward and rearward on their respective tracks while engaging a pressurized tubing to iteratively cut the pressurized tubing to a desired length.
In accordance with a further feature, the holding clamp, cutting tool, and sealing clamp of each of the first and second actuator groups are moveable between an operative position and a raised position, and wherein when the first and second actuator groups are moved rearward the holding clamp, cutting tool, and sealing clamp are moved from the operative position to the raised position.
In accordance with a further feature, each of the first and second actuator groups has a non-operative end, and wherein the non-operative ends of the first and second actuator groups are angled away from each other and the operative position of the first and second actuator groups are maintained in common.
In accordance with a further feature, the holding clamp, cutting tool, and sealing clamp of each of the first and second actuator groups are mounted together on a frame that is movable by a position actuator .
In accordance with a further feature, the position actuator of each of the first and second actuator groups are mounted on a respective vertical plate that is further mounted on a carriage on the respective first and second tracks.
In accordance with a further feature, the system further includes a control unit that is operably connected to each of the first and second actuator groups, which causes the first and second actuator groups to move on the first and second tracks, respectively, to control a distance between the first and second actuator groups to a desired cut tube length.
In accordance with a further feature, the first and second tracks are mounted on a common frame.
In accordance with some embodiments of the inventive disclosure, there is provided a method for producing tubing sections for medical use. The method includes providing a first actuator group and a second actuator group that are each moveable along a linear direction parallel to each other, between a home position and a forward position. Each of the first and second actuator groups having a cutting tool and a sealing clamp, wherein the sealing clamp is rearward of the cutting tool. The method also includes feeding tubing between the first and second actuator groups, and iteratively and reciprocally moving the first and second actuator groups such that one actuator group of the first and second actuator groups is moved forward to the forward position while the sealing clamp of the one actuator group is clamped onto the tubing, thereby pulling the tubing, and at the other of the first and second actuator groups which is in the home position, clamping the sealing clamp onto the tubing and cutting the tubing with the cutting tool, and then moving the one actuator group at the forward position back to the home position while the one actuator group at the home position is then moved forward.
In accordance with a further feature, the method further includes providing the tubing on a spool.
In accordance with a further feature, the method further includes pressurizing the tubing, and wherein reciprocally moving the first and second actuator groups maintains pressure in the tubing.
In accordance with a further feature, reciprocally moving the first and second actuator groups further comprises raising the cutting tool and the sealing clamp of the one actuator group at the forward position as it is moved rearward.
In accordance with a further feature, providing the first actuator group and the second actuator group comprises positioning the first and second actuator groups such that they have a common operative position with respect to the tubing, and wherein a non-operative end of each of the first and second actuator groups are angled away from each other.
In accordance with a further feature, providing the first actuator group and the second actuator group comprises providing the first actuator group and the second actuator group each further having a holding clamp that is located in front of the cutting tool, and when in the home position, clamping the holding clamp onto the tubing with the sealing clamp to hold the tubing while the cutting tool cuts the tubing.
In accordance with a further feature, feeding the tubing between the first and second actuator groups comprises passing the tubing through a feed guide.
In accordance with some embodiments of the inventive disclosure, there is provided a method for producing tubing sections for medical use. The method includes providing a cutting apparatus having a pair of actuator groups. Each of the actuator groups being moveable in a parallel linear direction, and each of the pair of actuator groups having a holding clamp, a cutting tool, and a sealing clamp, in order from front to back. The method further includes providing a roll of tubing, wherein the tubing is created by expansion, and the roll of tubing having a free end and a tail end. The method also includes connecting the tail end of the tubing to a pressurized gas source, and feeding the free end of the tubing into the cutting apparatus. The method includes, at a forward one of the pair of actuator groups, clamping at least one of the holding clamp or the sealing clamp onto the free end of the tubing, and pressurizing the tubing by the pressurized gas source. While clamping at the forward one of the pair of actuator groups, with the tubing being pressurized, the method includes moving the forward one of the pair of actuator groups along a linear track to a desired distance, thereby pulling the tubing. Upon the forward one of the pair of actuator groups reaching the desired distance, at the rearward one of the pair of actuator groups, the method includes clamping both the holding clamp and the sealing clamp of the rearward one of the pair of actuator groups onto the tubing. The method further includes, while both the holding clamp and sealing clamp of the rearward one of the pair of actuator groups are clamped onto the tubing, cutting the tubing with the cutting tool of the rearward one of the pair of actuator groups, and after cutting the tubing by the rearward one of the pair of actuator groups, while maintaining the sealing clamp of the rearward one of the pair of actuator groups clamped on the tubing, releasing the holding clamp of the rearward one of the pair of actuator groups and the sealing clamp of the forward one of the pair of actuator groups to release a cut length section of tubing. The method further includes, after releasing the holding clamp of the rearward one of the pair of actuator groups, and while maintaining the sealing clamp of the rearward one of the pair of actuator groups clamped on the tubing, moving the forward one of the pair of actuator groups rearward and moving the rearward one of the pair of actuator groups forward whereby the rearward one of the pair of actuator groups becomes the forward one of the pair of actuator groups, and the one of the pair of actuator groups that was forward become a rearward actuator group.
Although the invention is illustrated and described herein as embodied in a linear cut to length system for cutting tubing, it is, nevertheless, not intended to be limited to the details shown because various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. Additionally, well-known elements of exemplary embodiments of the invention will not be described in detail or will be omitted so as not to obscure the relevant details of the invention.
Other features that are considered as characteristic for the invention are set forth in the appended claims. As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one of ordinary skill in the art to variously employ the present invention in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting; but rather, to provide an understandable description of the invention. While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the drawing figures, in which like reference numerals are carried forward. The figures of the drawings are not drawn to scale.
Before the present invention is disclosed and described, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. The terms “a” or “an,” as used herein, are defined as one or more than one.
The term “plurality,” as used herein, is defined as two or more than two. The term “another,” as used herein, is defined as at least a second or more. The terms “including” and/or “having,” as used herein, are defined as comprising (i.e., open language). The term “coupled,” as used herein, is defined as connected, although not necessarily directly, and not necessarily mechanically. The term “providing” is defined herein in its broadest sense, e.g., bringing/coming into physical existence, making available, and/or supplying to someone or something, in whole or in multiple parts at once or over a period of time.
“In the description of the embodiments of the present invention, unless otherwise specified, azimuth or positional relationships indicated by terms such as “up”, “down”, “left”, “right”, “inside”, “outside”, “front”, “back”, “head”, “tail” and so on, are azimuth or positional relationships based on the drawings, which are only to facilitate description of the embodiments of the present invention and simplify the description, but not to indicate or imply that the devices or components must have a specific azimuth, or be constructed or operated in the specific azimuth, which thus cannot be understood as a limitation to the embodiments of the present invention. Furthermore, terms such as “first”, “second”, “third” and so on are only used for descriptive purposes, and cannot be construed as indicating or implying relative importance.
In the description of the embodiments of the present invention, it should be noted that, unless otherwise clearly defined and limited, terms such as “installed”, “coupled”, “connected” should be broadly interpreted, for example, it may be fixedly connected, or may be detachably connected, or integrally connected; it may be mechanically connected, or may be electrically connected; it may be directly connected, or may be indirectly connected via an intermediate medium. As used herein, the terms “about” or “approximately” apply to all numeric values, whether or not explicitly indicated. These terms generally refer to a range of numbers that one of skill in the art would consider equivalent to the recited values (i.e., having the same function or result). In many instances these terms may include numbers that are rounded to the nearest significant figure. To the extent that the inventive disclosure relies on or uses software or computer implemented embodiments, the terms “program,” “software application,” and the like as used herein, are defined as a sequence of instructions designed for execution on a computer system. A “program,” “computer program,” or “software application” may include a subroutine, a function, a procedure, an object method, an object implementation, an executable application, an applet, a servlet, a source code, an object code, a shared library/dynamic load library and/or other sequence of instructions designed for execution on a computer system. Those skilled in the art can understand the specific meanings of the above-mentioned terms in the embodiments of the present invention according to the specific circumstances.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and explain various principles and advantages all in accordance with the present invention.
While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the drawing figures, in which like reference numerals are carried forward. It is to be understood that the disclosed embodiments are merely exemplary of the invention, which can be embodied in various forms.
In general, the actuator groups 108, 110 alternately travel down, and back, on their respective tracks 104, 106 for each length of tubing being cut. That is, for example, actuator group 108 will clamp and hold the tubing using its sealing clamp, travel down track 104 while actuator group 110 remain in the home position substantially as shown. Then actuator group 110 clamps with both its holding clamp and sealing clamp, and cuts the tubing with its cutting tool, and, while maintaining the sealing clamp closed (clamped onto the tubing), actuator group 110 moves forward on track 106 while actuator group 108 moves rearward to the home position, and then clamps and cuts the tubing the same way actuator group 110 did in the home position. When an actuator group 108, 110 returns to its home position, as the other travels down its track from its home position, the tools of the returning actuator group are lifted by its position actuator so that the actuator group traveling down its track while holding the tubing passes under the returning actuator group. The tubing is fed into the system 100 through a guide 112 and is inflated under pressure, such as by nitrogen gas or some other gaseous fluid, being pumped into the tubing. As one actuator group moves forward, the tubing remains under pressure, and expanded, without any edge seams being formed by pinch rollers, as is used in the prior art.
The tubing 300 can be provided on a spool 301, and a free end of the tubing 300 can be connected to a pressure source 302, such as a nitrogen gas source, that pressurizes the tubing to a specified pressure, such as through an adjustable pressure regulator 304. The working end of the tubing 300 is then fed through the apparatus to be cut, under pressure, into sections of a desired length. The cut sections of tubing, having been pressurized, have much less curve to them than if they had been cut without being under pressure as the pressure is sufficient to change the intermolecular tension in the polymeric material resulting from having been stored on a spool 301. It is further contemplated that the tubing can be provided directly from an expansion machine that expands the tubing, rather than from a spool. In either case, the tubing will have a free end that is either coming off the spool or out of the expanding machine, and a tail end at the other end of the tubing.
These tools of the actuator group 108 are mounted on a frame 508 that is connected to a series of parallel shafts 506 that are moveable along their axis by position actuator 504. Wiring to control operation of each tool 200, 202, 204 and the position actuator 504 is carried by the actuator group 108. The position actuator 504 is electrically or pneumatically operable to move the shafts up or down, thereby raising or lowering the tools 200, 202, 204. The position actuator 504 is mounted fixedly on a vertical plate 402 that is mounted on a carriage 500. The carriage 500 moves linearly, along the track 104. In general, when the carriage 400 is in the position shown, abutting back stop 502 for example, the tools 200, 202, 204 are in the lowered position. The tools 200, 202, 204 remain in the lowered position as well as while the carriage 400 is moved forward (away from back stop 502) along the track 104. Prior to returning to the position shown from a forward position, the position actuator 504 is actuated to raise the tools 200, 202, 204 by drawing shafts 506 upward. Then the tools 200, 202, 204 are again lowered once the carriage 400 is in the home position.
In step 702 a forward actuator group (e.g. 108 or 110, whichever is forward) engages its sealing clamp (e.g. 200) on the pressurized tubing. In actuality, when a clamp is first applied to the free end of the tubing is when the tubing become pressurized as the gas being used to pressurize the tubing will simply be expelled from the free end until the free end is clamped. In step 704 the forward actuator group is moved on its respective track forward to a position such that the distance from the end of the tubing at the forward actuator group, which will be just forward of the forward actuator group's sealing clamp (about equal to the position of the cutting tool of the forward actuator group), to the location of the cutting tool of the rearward actuator group is at a desired length. Once the forward actuator group is in position, the sealing and holding clamps of the rearward actuator group are engaged, and the cutting tool of the rearward actuator group is then engaged to cut the tubing. After the tubing is cut by the rearward actuator group the holding clamp of the rearward actuator group can be released. The sealing clamp of the rearward actuator group is maintained in a clamped engagement to keep the tubing pressurized. In step 708, the sealing clamp of the forward actuator group is released to release the cut-off section of tubing. Then in step 710 the rearward actuator group, while maintaining its sealing clamp in a clamped engagement of the tubing, is moved forward, and forward actuator group, having been completely disengaged from the tubing, is moved rearward. In moving the forward actuator group rearward, the forward actuator group's clamps and cutting tool are raised or otherwise moved out of the way of the rearward actuator group to allow the actuator groups to pass by each other. The rearward actuator group, while maintaining its sealing clamp closed on the tubing, is then forward to the desired position, pulling the tubing with it. Once the positions of the actuator groups are swapped, the process is repeated; the previously forward actuator group is then the rearward actuator group, and vice versa.
The process is shown in
A linear cut to length tubing cutting system has been disclosed that avoid the use of a pinch roller system to keep the tubing under pressure, but which also produces undesirable edge seams along the tubing. The inventive system disclosed herein uses to actuator groups that each have a holding clamp, and cutting tool, and a sealing clamp. Each actuator group is on a respective parallel track, and they are alternatively moved back and forth on their respective tracks to cut the tubing to a desired length while maintaining pressure in the tubing. Although certain embodiments have been disclosed herein, alternative and equivalent structures will occur to those skilled in the art that can be used in an interchangeable manner to accomplish the same function. For example, to raise the holding clamp, cutting tool, and sealing clamp, the carriage can raise the entire actuator group vertically, rather than using the position actuator to raise these tools.
This application is a non-provisional conversion of U.S. Provisional Application No. 63/034,217, filed Jun. 3, 2020, the entirety of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63034217 | Jun 2020 | US |