The present application is a national stage application under 35 U.S.C. § 371 of International Application No. PCT/GB2016/053105, filed 6 Oct. 2016, which claims priority to Great Britain Patent Application No. 1518337.9, filed 16 Oct. 2015. The above referenced applications are hereby incorporated by reference into the present application in their entirety.
This invention relates to linear, electrically switchable spray generator for simultaneously generating multiple streams of droplets, and methods of operating such an electrically switchable spray generator.
Electronic droplet generators that use ultrasonic vibration to generate liquid droplets are well known in the art and have found use in a wide range of fields including medical drug delivery and the treatment of air (for example fragrance delivery and humidification). A subset of such devices in widespread use (commonly referred to as ‘pond misters’) use a vibrating surface covered by liquid to cause droplets to be generated through the break-up of standing waves on the liquid free surface (U.S. Pat. No. 3,812,854 being an example). This break-up leads to droplets with a wide range of sizes being produced and shaping of the liquid container above the level of the liquid is used to limit the size range of droplets that escape and are delivered. With a wide range of droplets being contained and returned to the bulk liquid, such devices have low efficiency resulting in high power consumption. The efficiency of such devices can be improved by constraining the free surface of the liquid with a perforate plate or membrane (U.S. Pat. No. 4,533,082 for example). This plate may have just a single nozzle (for dispensing or printing applications for example in which individual drops may be dispensed on demand) or may have many thousands of nozzles (for nebuliser applications for example). Relatively monodisperse droplets are produced when such perforate plates are used in which the droplet diameter is related to the size of the openings, or nozzles, in the perforate plate. Such devices still suffer multiple disadvantages: In particular, the vibrating surface needs to be mounted close to the plate, but not touching, for effective droplet generation and not all liquid in the container can be delivered (as the liquid is required to transmit the pressure waves to the perforate plate). A preferred embodiment of such devices is therefore one in which the perforate plate itself is vibrated by the driver element (commonly called the actuator) with examples including U.S. Pat. No. 4,533,082 and EP 0431992. This enables the delivery of relatively well monodispersed droplets without requiring the pressure waves to be transmitted through a liquid layer, thereby further increasing efficiency and enabling a wider range of embodiments. A preferred embodiment of such a device such as described in U.S. Pat. No. 5,518,179 uses a bending mode actuator to deliver the vibrational energy to the plate as this enables the use of thin low cost actuators and further increases efficiency. A linear format bending mode actuator is described in WO 00/33972. This linear format actuator is able to produce only a limited velocity amplitude and hence a limited amplitude of pressure oscillation in the fluid to drive jetting/droplet ejection. It is also only able to produce a limited degree of uniformity of motion along its length. These factors translate into limitations in the ability to control the droplet size and droplet velocity and limitations in the ability of the device to eject viscous fluids. In addition to this, the device is unable to operate with a nozzle plate which can be separated from the actuator. This is because, in the prior art designs, the nozzle plate must be very firmly attached to the actuator in order to vibrate with high enough amplitude to cause droplet ejection. In practice, this requires a permanent bonding method, for example adhesive bonding. A separable nozzle plate allows removal and replacement of the nozzle plate. This is advantageous as the nozzles can become blocked or damaged during usage. It also allows the user to avoid cross-contamination between different fluids, and enables use of a consumable fluid cartridge, integral with the nozzle plate.
It is the objective of this invention to overcoming the shortcomings in the prior art linear droplet generating devices, by providing a device capable of producing a uniform and high amplitude motion along the nozzle bearing region, as well as providing a separable nozzle plate. This has the advantages of creating droplets with uniform size and velocity, and electronically controllable dispense rate. This in turn enables the precise deposition of liquids, for example for creating thin uniform films of material on a substrate.
This invention provides a linear droplet generation device, in which the amplitude of the oscillating motion of the nozzle plate is substantially uniform at all the nozzle locations along its length. In a preferred embodiment of the invention, this is achieved by providing a nozzle plate that is curved, e.g. by adding at least one radius of curvature to the nozzle plate, so that it is stiffened in the longitudinal direction. By “longitudinal direction”, we mean along/parallel to the long axis of the nozzle plate (which is also along the axis of the linear array of nozzles). In addition to this, the actuator is preferably segmented or slotted, so that longitudinal waves are not strongly excited (i.e. bending of the actuator is preferentially perpendicular to the longitudinal direction), nor are longitudinal waves readily transmitted along the length of the actuator (i.e. there is some degree of mechanical isolation between neighbouring actuator segments).
The curved nozzle plate may be curved across its entire width, or a curved portion may extend over only a part of the width. The radius of curvature may be constant, typically when the curved section extends from one edge to the other edge of the nozzle plate.
The nozzle plate typically has two opposite ends between which the linear array extends. The linear array may extend along a longitudinal axis of the nozzle plate.
The linear array preferably lies entirely within the curved portion.
The curved portion may be a single curve, i.e. a convex or concave shape. Alternatively, there may be a plurality of curved portions and both convex and concave portions may exist on the same nozzle plate.
The curved portion may extend along the longitudinal axis.
The curved portion preferably extends in only one direction, i.e. it is curved out of the plane in which the plate lies. The curve portion is preferably curved only in one dimension.
A range of aspects of the invention are now disclosed with reference to the following figures:
In both of the above cases, the nozzle plate is a flexible plate, by which we mean that it is capable of being flexed by the actuating force. However, the magnitude of the vibration (which is typically a few microns) is much less that the magnitude of the static curvature of the nozzle plate (which is typically a few hundred microns). Hence the overall curved shaped of the nozzle plate remains essentially the same while it is being vibrated.
The fluid in the fluid reservoir will have a mass-loading effect on vibration of the nozzle plate. The mass-loading is typically equivalent to a one or two millimetre deep layer of fluid, although this can vary according the boundary conditions in the reservoir. This has the effect of lowering the resonant frequencies of the various vibration modes. The radius of curvature of the nozzle plate is preferably such that the resonant frequency of any longitudinal oscillation modes are above the operating frequency of the device.
Using formulas from “Formulas for Natural Frequency and Mode Shape” by R. D. Blevins, an analytical form of the modal frequency of curved plates is given by:
and ωij are the angular natural frequencies of the flat and curved plates, αij and λij are dimensionless constants for the mode and boundary conditions of interest, E is the elastic modulus of the material, γ is the effective mass per unit area (including fluid loading), r is the radius of curvature of the plate, h is the thickness of the plate, L is the length of the plate, v is the Poisson's ratio of the plate material. We can see from these equations that the modes of the curved plate occur at higher frequencies than the corresponding modes in a similar flat plate. The constants αij and λij are dependent on the aspect ratio of the plate. For example, for plate length to unsupported width ratio of 2.5, the lowest frequency modes are given by λ11=12.2, λ12=13.2, α11=0.701 and α12=0.711.
As an example, a steel nozzle plate with an unsupported width of w=3.5 mm and thickness of h=0.1 mm is expected to exhibit a first mode around 16 kHz when flat, and 36 kHz when curved with a radius of r=10 mm under certain fluid-loading conditions. Experimentally, the curved plate is found to have good performance at an operating frequency of 23 kHz, whereas the flat plate has a tendency to vibrate non-uniformly at this frequency. This operating regime has the advantage that it is essentially silent, as the operating frequency is ultrasonic. It is especially useful for generating droplets of comparatively large diameter, d, in the range 40 μm<d<400 μm.
As a further example, a steel nozzle plate with an unsupported width of w=2.5 mm and thickness of h=0.15 mm is expected to have a first resonant frequency of around 117 kHz when curved with a radius of 5 mm. An operating frequency of around 100 kHz can then be used to provide uniform motion of the nozzle-bearing region.
The operating frequency of around 100 kHz is found to be especially useful in generating small droplets, with diameters in the range 5 μm<d<50 μm.
As a further example, a steel nozzle plate with an unsupported width of w=6 mm and a thickness of h=0.1 mm is expected to have a first resonant frequency of around 20 kHz when curved with a radius of 20 mm. Drive waveforms with frequency components below 20 kHz can be used with this device to produce uniform ejection of droplets. This would be useful for generating large sized droplets in environments where the acoustic noise associated with operation at audible frequencies can be tolerated.
The piezoelectric elements (203) and substrate elements (202) are preferably slotted or partially slotted. Piezoelectric materials slots (211) and actuator substrate slots (210) can extend for part or all of the actuator width, W (222) or actuator height, H (221). These slots discourage the propagation of motion in the longitudinal direction (along the length, L, of the actuator (220)), and helps to improve the uniformity of motion at the nozzle locations. The slots or partial slots serve to segment the actuator into “fingers”, with width F (223). These fingers are preferably formed with separation comparable to or somewhat less than the actuator width, W (222). The preferred finger width is typically in the range W/3≤F≤W. The segmentation of the actuator into “fingers” means that the forces on the actuator when a voltage is applied are primarily directed into lateral bending motion and not into longitudinal bending motion.
Slots or partial slots may also be included in the nozzle plate, to further isolate regions of the device from neighbouring regions and discourage the propagation of longitudinal bending waves. This can allow a region of the actuator to be energised and generate droplets, whilst a neighbouring region remains comparatively still. A compliant film, such as PET or polyimide can be used to seal any regions of substrate of nozzle plate where the slots penetrate through the thickness.
The actuator may be supported in a flexible manner—for example by bonding to a flexible skirt or resting on a compliant layer such as a closed-cell foam. The soft support can also be used to support and seal the ends of the device, including the ends of the nozzle plate. In the case of soft support, the actuator is designed so that each side enters a resonant bending mode oscillation with half a wavelength across its width, W (222). Alternatively, the actuator can be rigidly supported along its outermost long edges, in which case, it forms a bending mode oscillation with a quarter of a wavelength across its width, W (222). Other support methods may also be applied, such as supporting close to nodal locations of the actuator vibration, where losses due to damping will be lower.
In one embodiment, the operating frequency is approximately 25 kHz, the actuator substrate is 1 mm thick aluminium or 0.7 mm thick steel, and the piezoelectric layer is a 1 mm thick layer of PZT. The actuator width for half-wavelength operation (softly supported) is then around 12 mm and the width for quarter-wavelength operation (anchored) is around 6 mm. More generally, the substrate and piezoelectric layer thickness values can be between 0.1 mm and 3 mm, depending on the operating frequency and power level required for a particular application.
The nozzle plate may be permanently attached to the actuator, or it may be separably attached, so that it can be removed or replaced. The separable nozzle plate arrangement may be used to adjust nozzle sizes or nozzle patterns, to clean or replace blocked or damaged nozzle plates, to avoid cross-contamination between different fluids, or to form part of a consumable fluid package. The nozzle plate may be made separable by mechanical fixings such as screws, cams or levers, by interference fits such as a taper lock or thermal expansion fit, by a removable adhesive or by magnetic attachment.
The droplet generators in
An example of such an actuator, operating at around 25 kHz, has an outer diameter of 40 mm and a total length of 88 mm. The front face diameter of 23 mm allows a nozzle plate of 15 mm length to be clamped in place with a pre-defined curvature.
Many of the embodiments shown here use bending-mode piezoelectric unimorph actuators. In general, bimorph or multi-layer actuators can be substituted where greater force or displacement per volt is required. Axial mode actuators can be substituted where greater force or robustness is required. Electrostrictive or magnetostrictive actuators can also be applied in a similar manner to achieve the same objective.
The actuator substrate material is preferably stainless steel or aluminium. The nozzle plate material is preferably stainless steel, nickel or polyimide. In the case that a polymer (such as polyimide) is used for the nozzles, the polyimide may be supported by a stiffer layer (such as stainless steel) close to the nozzles, forming a steel-polyimide composite nozzle plate.
Number | Date | Country | Kind |
---|---|---|---|
1518337 | Oct 2015 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2016/053105 | 10/6/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/064473 | 4/20/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4465234 | Maehara | Aug 1984 | A |
5444471 | Usui | Aug 1995 | A |
5746373 | Sanada | May 1998 | A |
5960224 | Sanada | Sep 1999 | A |
6394363 | Arnott | May 2002 | B1 |
7108197 | Ivri | Sep 2006 | B2 |
7960894 | Duru | Jun 2011 | B2 |
20060207591 | Gallem | Sep 2006 | A1 |
20090167812 | Asai | Jul 2009 | A1 |
20090242663 | Yu | Oct 2009 | A1 |
20100039480 | Brown et al. | Feb 2010 | A1 |
20110121095 | Crichton | May 2011 | A1 |
20110168804 | Crichton | Jul 2011 | A1 |
20110315786 | Kambayashi | Dec 2011 | A1 |
20120143152 | Hunter | Jun 2012 | A1 |
20130119151 | Moran | May 2013 | A1 |
20130150812 | Hunter | Jun 2013 | A1 |
20140110500 | Crichton | Apr 2014 | A1 |
20140361095 | Haran | Dec 2014 | A1 |
20140367486 | Kawano | Dec 2014 | A1 |
20150122906 | Kawano | May 2015 | A1 |
20160236470 | Mizukami | Aug 2016 | A1 |
20180221906 | Anzenberger | Aug 2018 | A1 |
20180297053 | Buckland | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
0 943 436 | Sep 1999 | EP |
1 243 417 | Sep 2002 | EP |
H06 7720 | Jan 1994 | JP |
2008029216 | Mar 2008 | WO |
2013090468 | Jun 2013 | WO |
Entry |
---|
International Search Report dated Mar. 9, 2017, in International Application No. PCT/GB2016/053105; Filed: Oct. 6, 2016 Applicant: The Technology Partnership PLC. |
Written Opinion of the International Searching Authority dated Mar. 9, 2017, in International Application No. PCT/GB2016/053105; Filed: Oct. 6, 2016 Applicant: The Technology Partnership PLC. |
Number | Date | Country | |
---|---|---|---|
20180297053 A1 | Oct 2018 | US |