This is a National Stage entry of International Application PCT/EP2004/007316, with an international filing date of Jul. 5, 2004, which was published under PCT Article 21(2) as WO/2005/005212 A1, and the complete disclosure of which is incorporated into this application by reference.
The present invention relates to a linear electromechanical screw actuator for a parking brake of a motor vehicle.
Instead of the traditional manually operated lever which imparts a traction movement to one or two Bowden cables connected to the parking brakes of a motor vehicle, it has recently been proposed to effect that traction movement by means of an electromagnetic actuator (see, for example, US2002/0100647 A1).
The object of the invention is to provide a linear actuator capable of imparting to the Bowden cables a traction movement for a maximum travel of approximately 40 mm rapidly (less than 1.0-1.5 seconds), in a non-backdrivable manner (that is to say, capable of maintaining the imparted braking force in the absence of an unlocking command) and capable of exerting a high traction force of the order of approximately 3600 N.
Another object of the invention is to provide a strong and reliable linear actuator which is easy to mount and which is constituted by a minimum number of components.
A further particular object of the invention is to provide an actuator which is such that, when the braking force is applied, the path of forces and reactions which passes through that actuator involves a minimum number of components.
Those and other objects and advantages which will be better understood hereinafter are achieved according to the invention by a braking system and by an actuator according to the appended claims.
A description will now be given of the structural and functional features of some preferred but non-limiting embodiments of a braking system and of an actuator according to the invention; reference is made to the appended drawings in which:
Referring first of all to
The actuator 10 has a substantially cylindrical rigid casing 12 defining a central longitudinal axis x which coincides with the direction of operation of the rod 11. The casing 12 is advantageously formed by joining two bodies 12a, 12b, of which the one body 12a located on the side where the rod 11 emerges is rigid while the complementary body 12b, which does not have to be subjected to appreciable stresses during use, can be thinner.
Mounted inside the casing is an electrical motor 13 with an associated reduction unit 14 whose rotary member at the output side comprises a radial flange 15 which is rotatable about the central axis x of the actuator. The flange 15 carries a plurality of axial pins 16, for example three or four parallel pins arranged in an angularly equidistant manner around the axis x.
The head or output portion 12a of the casing 12 has an end transverse terminal wall 17 having a central opening 18 through which the rod 11 extends. Secured to the inside of the head portion 12a of the casing is a metal bush 19 which is threaded internally with a trapezial thread 20 with which engages the external thread 21 of a tubular nut element 22 having a trapezial internal thread 23 opposite the external thread 21 and coaxial therewith. The nut element 22 co-operates in a threaded manner with the rod 11, which has an axially internal (or proximal) portion 11a having a trapezial thread 24 which is congruent with the internal thread 23 of the nut, and an axially more external (or distal) portion 11b having a non-circular cross-section. For example, as shown in
The nut element 22 has a base portion in the form of a radial flange 25 in which are formed axially oriented through-openings 26 in which the pins 16 carried by the rotary member 15 engage slidingly.
In the region of the outlet opening 18 for the rod 11, the casing has means for preventing the rotation of the rod about the longitudinal axis of the actuator. Those anti-rotation means may be constituted by the opening 18 itself, which may have a non-circular shape corresponding to the cross-section of the distal portion 11b of the rod 11. Alternatively, the anti-rotation means could comprise one or more grub screws 27 (
In the alternative embodiment illustrated in
When the electrical motor 13 is activated, the flanged member 15 causes the nut 22 to rotate relative to the threaded bush 19 and to the casing 12, so that the nut performs a screwing movement about and along the longitudinal axis x. Owing to the anti-rotation engagement between the rod and the casing, and owing to the internal threaded coupling between the nut and the rod, which, as stated, have respective threads 23 and 24 opposite those 20, 21 of the external threaded coupling between the nut 22 and the casing, the rotation of the nut brings about a rapid linear translation (without rotation) of the rod 11, which is rapidly retracted towards the inside of the actuator, thus operating the Bowden cables C1, C2 which control the parking brakes B1, B2. During the screwing movement about the axis x, the nut 22, with its flange 25, approaches (or moves away from, depending on the sense of rotation imparted by the motor) the rotary flange 15, by sliding on the axial pins 16 (or, in the variant of
It will be appreciated that, owing to the contribution made by the two threaded couplings, the speed of linear translation of the rod 11 is very high and therefore the parking brakes can be activated rapidly, despite the fact that the threads have small angles of inclination (preferably less than 14° and more preferably of approximately 8°) in order to render the system non-backdrivable. It is desired that, owing to the wear between the mobile portions of the actuator, the rod should be capable of maintaining the retracted position reached and avoiding a situation where, in the absence of an operating command, the rod may be removed from the casing, for example if the vehicle V is parked on a slope.
The reaction forces transmitted in return to the actuator during braking may be discharged to the outside (onto a fixed component of the vehicle) by way of a flange 28 formed near the region where the rod emerges from the rigid portion 12a of the casing or, alternatively, as illustrated with a broken line in
Owing to the proximity of the threaded members to the check portions or surfaces 17 and 28, the path of the forces acting on the actuator when the latter is activated affects few members (the rod, the nut, the threaded bush and the casing) and those forces are discharged to the outside of the actuator without stressing the reduction unit 14 or the electrical motor 13. This is advantageous if it is considered that the braking forces (of the order of approximately 3600 N) would inevitably increase the clearance between the transmission members of the reduction unit and the motor, thus reducing the service life of the actuator. The small number of members affected by the braking forces instead defines a very short kinematic chain which guarantees the reliability of the actuator over time.
Number | Date | Country | Kind |
---|---|---|---|
TO20030106 U | Jul 2003 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2004/007316 | 7/5/2004 | WO | 00 | 2/23/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/005212 | 1/20/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4006802 | Evans | Feb 1977 | A |
5178237 | Ursel et al. | Jan 1993 | A |
5180038 | Arnold et al. | Jan 1993 | A |
6145634 | Holding | Nov 2000 | A |
6158822 | Shirai et al. | Dec 2000 | A |
6655507 | Miyakawa et al. | Dec 2003 | B2 |
20020100647 | Miyakawa et al. | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
1 211 149 | Jun 2002 | EP |
2 812 056 | Jan 2002 | FR |
2 304 838 | Mar 1997 | GB |
Number | Date | Country | |
---|---|---|---|
20060201758 A1 | Sep 2006 | US |