LINEAR FRAC PUMP DRIVE SYSTEM SAFETY DEFLECTOR

Information

  • Patent Application
  • 20230142942
  • Publication Number
    20230142942
  • Date Filed
    March 02, 2021
    3 years ago
  • Date Published
    May 11, 2023
    a year ago
Abstract
A linear pump includes a centrally-disposed drive system and a plunger having a center portion coupled to the drive system, and first and second fluid ends disposed at the first and second ends of the plunger. The pump further includes first and second packing seals each being disposed about the plunger to isolate fluids within the respective first and second fluid ends. First and second adapters are disposed at an interface between the drive system and respective first and second fluid ends, each adapter incorporating an angled deflector configured to deflect and redirect high-pressure fluids escaping past the respective packing seal toward the drive system.
Description
FIELD

The present disclosure relates to positive displacement pumps, and in particular, to a safety deflector for the drive system of a linear frac pump.


BACKGROUND

Existing frac pumps use a chevron-style “packing seal” on a plunger to create a robust seal against the frac fluid or media being pumped at pressures of approximately 15,000-20,000 PSI. This frac media may be composed of water, sand, gel, acid, cement, and other chemicals typically used in well servicing and completion. This media is extremely harsh and even more so at the extreme pressures needed for fracking operations. Therefore, the plunger packing seal has a limited life that may expire during the service pumping operation while under high pressure. Upon failure of the packing seal, high-pressure streams of the harsh frac fluid would escape, with the potential to cause considerable damage to the pump.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an embodiment of a linear pump according to the teachings of the present disclosure;



FIG. 2 is a cross-sectional view of an embodiment of a linear pump according to the teachings of the present disclosure;



FIG. 3 is a more detailed partial cut-away view of an embodiment of the linear pump incorporating a drive system safety deflector according to the teachings of the present disclosure; and



FIG. 4 is a more detailed partial cross-sectional view of the linear pump incorporating a drive system safety deflector according to the teachings of the present disclosure.





DETAILED DESCRIPTION

A plunger packing seal may fail during service pumping operations. When this failure occurs, the high-pressure frac fluid escapes past the plunger. On traditional frac pumps the jet stream of fluid may impact the power end of the pump and potentially damage the pump. In a linear pump configuration, where the fluid end and the drive system are in linear alignment, the risk of damage to the power end due to a failure of the packing seal is even higher. The present disclosure describes a novel deflector structure situated between the fluid end and the drive system of the linear pump that eliminates a direct pathway for the jet stream of frac fluid to enter the drive system. In this way, even in the event of a packing seal failure at high pressure, the drive system is protected.


In a double-action linear pump configuration 10 shown in FIGS. 1 and 2, the drive system 12 is disposed between two fluid ends 14 and 15. The drive system 12 actuates a plunger 16 with two ends that move the frac fluid in both fluid ends 14 and 15. The drive system 12 may be powered by natural gas electric generators, such as gas turbine generators and other types of generators, and an electric motor that powers a hydraulic system that drives the plunger. The fluid ends 14 and 15 each includes two or more valves 18 and 19, functioning as suction valve and discharge valve, that allow the frac fluid to be pumped in and out of the fluid end block by the linear actuation of the plunger.


Referring to FIGS. 3 and 4, an adapter 20 is disposed at an interface between each fluid end and the drive system 12 (referring to fluid end 14 as shown but also applicable to fluid end 15). The adapter 20 is secured to both the drive system 12 and the fluid end 14 at an interface therebetween. The linear pump configuration 10 shown in FIGS. 1 and 2 includes an adapter 20 at both ends of the drive system 12 serving as the interface between the drive system 12 and the fluid ends 14 and 15. The adaptor 20 houses a deflector 22 that is situated within a void 24 within the adapter 20 that is open to the atmosphere outside of the pump 10. With reference also to FIG. 4, the deflector 22 incorporates an angled conical surface 30 that would function to deflect jets of fluid if high-pressure frac fluids escape past the packing seal 32 in the fluid end 14 toward the drive system 12. The angled conical surface 30 of the deflector 22 encircles the plunger 16 and is tapered away from the packing seal 32. The deflector 22 maintains close contact with the plunger 16 so that there is not a gap that would allow fluids to travel between the plunger 16 and the deflector 22 and reach the drive system 12. The angled conical surface 30 of the deflector 22 may be shaped to include one or more concave features to improve the sealing characteristics of the deflector 22 in the event of a packing seal failure. The deflected fluid spray is directed by the angled surface of the deflector 22 out of the adapter 20 and vented to the atmosphere. The deflector 22 may be fabricated of any suitable elastomer and/or metal materials.


It should be noted that although the illustrations herein show a double-action pump configuration, the deflector is equally applicable to a single action pump with a single fluid end.


The features of the present invention which are believed to be novel are set forth below with particularity in the appended claims. However, modifications, variations, and changes to the exemplary embodiments described above will be apparent to those skilled in the art, and the drive system safety deflector for a linear pump described herein thus encompasses such modifications, variations, and changes and are not limited to the specific embodiments described herein.

Claims
  • 1. A reciprocating pump comprising: a drive system;a plunger having a center portion coupled to the drive system, and the plunger further having first and second end portions;first fluid end receiving the first end portion of the plunger;second fluid end receiving the second end portion of the plunger;first and second packing seals each being disposed about the plunger to isolate fluids within the respective first and second fluid ends; andfirst and second adapters each being disposed at an interface between the drive system and respective first and second fluid ends, each adapter incorporating an angled deflector configured to deflect and redirect high-pressure fluids escaping past the respective packing seal toward the drive system.
  • 2. The pump of claim 1, wherein the first and second adapters each comprises a void in fluid communication with an atmosphere external to the pump.
  • 3. The pump of claim 1, wherein the angled deflector comprises a conical shape circumscribing the plunger.
  • 4. The pump of claim 1, wherein the angled deflector comprises an annular body circumscribing the plunger with a surface contour configured to deflect escaped fluids away from the drive system.
  • 5. The pump of claim 1, wherein the drive system is configured to actuate the plunger to cause a linear displacement of the plunger end portions to reciprocate within the first and second fluid ends of the pump.
  • 6. A linearly-actuated pump comprising: a plunger having a center portion and first and second end portions, the center portion being coupled to a drive system capable of effecting linear displacement of the plunger;first fluid end receiving the first end portion of the plunger;second fluid end receiving the second end portion of the plunger;first and second packing seals each being disposed about the plunger to isolate fluids within the respective first and second fluid ends; andfirst and second adapters each being disposed at an interface between the drive system and respective first and second fluid ends, each adapter incorporating a deflector encircling the plunger and having a conical surface configured to deflect and redirect high-pressure fluids escaping past the respective packing seal toward the drive system.
  • 7. The pump of claim 6, wherein the first and second adapters each comprises a void in fluid communication with an atmosphere external to the pump.
  • 8. The pump of claim 6, wherein each deflector comprises an angled surface configured to deflect fluids from the packing seal away from the drive system.
  • 9. The pump of claim 6, wherein the drive system is configured to actuate the plunger to cause a linear displacement of the plunger end portions to reciprocate within the first and second fluid ends of the pump.
  • 10. A pump comprising: a plunger coupled to a drive system at a first end portion;a fluid end receiving a second end portion of the plunger;a packing seal disposed about the plunger to isolate fluids within the fluid end; andan adapter disposed at an interface between the drive system and the fluid end, the adapter incorporating an angled deflector configured to deflect and redirect high-pressure fluids escaping past the packing seal toward the drive system.
  • 11. The pump of claim 10, wherein the adapter comprises a void in fluid communication with an atmosphere external to the pump.
  • 12. The pump of claim 10, wherein the angled deflector comprises a conical shape circumscribing the plunger.
  • 13. The pump of claim 10, wherein the drive system is configured to actuate the plunger to cause a linear displacement of the plunger end portions to reciprocate within the fluid end of the pump.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/020548 3/2/2021 WO
Provisional Applications (1)
Number Date Country
62984145 Mar 2020 US