1. Field of the Invention
The present invention relates to a linear guide assembly, and more particularly to a linear guide assembly having a point-contact configuration.
2. Description of Related Art
With reference to
However, each rolling ball 83 is in surface-contact with the concave surfaces 821. A large area of an outer surface of each rolling ball 83 is touched by the concave surfaces 821, instead of the oil. Accordingly, a friction between the rolling ball 83 and the concave surfaces 821 is large, and the rolling ball 83 cannot rotate smoothly and make noises. Nevertheless, each partition 82 does not have any structure to store the oil, so the oil easily escapes from the partition 82 and the rolling ball 83.
With reference to
Similarly, each rolling ball is still in surface-contact with the paw surfaces 9211. Consequently, a friction between the rolling ball and the paw surfaces 9211 is still large, and each paw 921 does not have any structure to store the oil.
To overcome the shortcomings, the present invention tends to provide a linear guide assembly to mitigate the aforementioned problems.
The main objective of the invention is to provide a linear guide assembly having a point-contact configuration.
A linear guide assembly has a bar device, multiple partitions, multiple containing spaces and multiple rolling balls. The partitions are mounted between two bars of the bar device at intervals to form the containing spaces. The rolling balls are respectively and rotatably mounted in the containing spaces. Each partition has multiple first protrusions and multiple second protrusions. Each rolling ball is in point-contact with the first protrusions and the second protrusions of adjacent two of the partitions. With the point-contact configuration, an outer surface of each rolling ball is lubricated by much oil.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
With reference to
The bar device is resilient and has a front side F, a rear side R, an extending direction E and two bars 20. The rear side R of the bar device is opposite to the front side F of the bar device. The two bars 20 are parallel to each other. Each bar 20 has an inner side. The inner side of each bar 20 faces that of the other bar 20 and has multiple recesses 21 arranged at intervals. The recesses 21 of the bar 20 respectively align with those of the other bar 20.
With reference to
The two first restricted sections 11 of the each partition 10 are respectively and securely mounted on the inner sides of the bars 20 beside the recesses 21 and align with each other.
Each first restricted section 11 has a front side f1, a rear side r1, two first restricted surfaces 111 and two first protrusions 112. The front side f1 of each first restricted section 11 faces the front side F of the bar device. The rear side r1 is opposite to the front side f1 of each first restricted section 11 and faces the rear side R of the bar device.
The two first restricted surfaces 111 of each first restricted section 11 are concave, are respectively formed on the front side f1 and the rear side r1 of the first restricted section 11.
The two first protrusions 112 of each first restricted section 11 respectively protrude from the first restricted surfaces 111. Preferably, each first protrusion 112 is an arcuate rib. The term “arcuate” in the present invention defines as a segment of a spheroid, which is similar to a ball, but not perfectly round.
Preferably, each first restricted section 11 has two first paws 110 on which the two first restricted surfaces 111 of the first restricted section 11 are respectively formed.
The two first paws 110 of each first restricted section 11 protrude upwardly and respectively face the front side F and the rear side R of the bar device. Each first paw 110 has a proximal end 1101 and a distal end 1102 opposite to the proximal end 1101 of the first paw 110. The distal end 1102 of each first paw 110 protrudes toward a corresponding adjacent one of the containing spaces S, such that the distal end 1102 of the first paw 110 is protuberant relative to the proximal end 1101 of the first paw 110. A thickness T1 of the distal end 1102 of each first paw 110 is larger than a thickness T2 of the proximal end 1101 of the first paw 110.
The second restricted section 12 of each partition 10 is located between the two first restricted sections 11 of the partition 10 and has a front side f2, a rear side r2, two second restricted surfaces 121 and two second protrusions 122. The front side f2 of the second restricted section 12 of each partition 10 faces the front side F of the bar device. The rear side r2 is opposite to the front side f2 of each second restricted section 12 and faces the rear side R of the bar device.
The two second restricted surfaces 121 of the second restricted section 12 of each partition 10 are concave, are respectively formed on the front side f2 and the rear side r2 of the second restricted section 12. The two second protrusions 122 of each partition 10 respectively protrude from the second restricted surfaces 121. Preferably, each second protrusion 122 is an arcuate rib.
Preferably, each second restricted section 12 has two second paws 120 on which the two second restricted surfaces 121 are respectively formed. The two second paws 120 of each second restricted section 12 protrude downwardly and respectively face the front side F and the rear side R of the bar device.
Each second paw 120 has a top end 1201 and a bottom end 1202 opposite to the top end 1201 of the second paw 120. The bottom end 1202 of each second paw 120 protrudes toward a corresponding adjacent one of the containing spaces S, such that the bottom end 1202 of the second paw 120 is protuberant relative to the top end 1201 of the second paw 120. A thickness T3 of the bottom end 1202 of each second paw 120 is larger than a thickness T4 of the top end 1201 of the second paw 120.
With reference to
With reference to
With reference to
With reference to
In the first embodiment, the first protrusions 112 and the second protrusions 122 are arcuate, so the first protrusions 112 and the second protrusions 122 can still be in point-contact with the corresponding rolling ball 30 even when the rolling ball 30 are shifted from the corresponding containing space S. The arcuate first protrusions 112 and second protrusions 122 also help the corresponding rolling ball 30 to stably stay in a central position of the containing space S, to reduce a shifting degree of the rolling ball 30, and to make the rolling ball 30 smoothly rotate.
With the protuberant second paws 120 and the protuberant first paws 110, the corresponding rolling ball 30 can be surrounded by the second paws 120 and the first paws 110 and be prevented from falling off the corresponding containing space S.
With reference to
With reference to
With reference to
One of the first paws 110 of each first restricted section 11 protrudes upwardly and the other first paw 110 of the first restricted section 11 protrudes downwardly. One of the second paws 120 of each second restricted section 12 protrudes upwardly and the other second paw 120 of the second restricted section 12 protrudes downwardly. A protruding direction of each second paw 120 is different from that of an adjacent one of the first paws 110.
With reference to
From the above description, it is noted that the present invention has the following advantages:
1. Point-Contact Configuration:
With the first protrusions 112,112A,112B and the second protrusions 122,122A,122B being in point-contact with the corresponding rolling ball 30, the outer surface of each rolling ball 30 is lubricated by more oil than a conventional rolling ball is. Accordingly, a friction between each rolling ball 30 and the two adjacent partitions 10 is effectively reduced, and the rolling balls 30 can rotate greatly smoothly.
2. Protuberant Structure:
Because the first protrusions 112,112A,112B and the second protrusions 122,122A,122B are protuberant and the protruding direction of each second paw 120 is different from that of the adjacent one of the first paws 10, the first protrusions 112,112A,112B and the second protrusions 122,122A,122B are capable of surrounding the rolling balls 30 well and prevent the rolling balls 30 from falling off.
3. Excellent Lubrication:
The oil-storage areas 40 can effectively contain the oil that lubricates the rotation of the rolling ball 30. Because the two oil-storage areas 40 of each containing space S communicate with each other, the oil is filled within the containing space S evenly such that the rolling ball 30 can rotate smoothly. Thus, the noise of the linear guide assembly is also reduced.
4. Steady Maintenance:
In the first embodiment, the first protrusions 112 and the second protrusions 122 are arcuate, so the first protrusions 112 and the second protrusions 122 can still be in point-contact with the corresponding rolling ball 30 even when the rolling ball 30 are shifted from the corresponding containing space S. The arcuate the first protrusions 112 and the second protrusions 122 also help the corresponding rolling ball 30 to stably stay in a central position of the containing space S, to reduce a shifting degree of the rolling ball 30, and to make the rolling ball 30 smoothly rotate.
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
2412803 | Dodge | Dec 1946 | A |
2566421 | Lapointe | Sep 1951 | A |
2897021 | Zeilman | Jul 1959 | A |
3450449 | Sibley et al. | Jun 1969 | A |
5988883 | Takamatu et al. | Nov 1999 | A |
6364086 | Blaurock et al. | Apr 2002 | B1 |
6616336 | Sayles et al. | Sep 2003 | B1 |
6830378 | Michioka et al. | Dec 2004 | B2 |
7465092 | Hsu et al. | Dec 2008 | B2 |
7563029 | Wu et al. | Jul 2009 | B2 |
7802922 | Chen | Sep 2010 | B2 |
8057100 | Chen et al. | Nov 2011 | B2 |
8297843 | Hsu | Oct 2012 | B2 |
8408796 | Hsu | Apr 2013 | B1 |
20040071373 | Keller et al. | Apr 2004 | A1 |
20040234181 | Kobayashi et al. | Nov 2004 | A1 |
20070110345 | Hsu et al. | May 2007 | A1 |
20080025653 | Matsumoto | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
102009031722 | Jan 2011 | DE |
07279970 | Oct 1995 | JP |
2007333011 | Dec 2007 | JP |
2009138863 | Jun 2009 | JP |
2010196801 | Sep 2010 | JP |
2012137177 | Jul 2012 | JP |
2013068249 | Apr 2013 | JP |
Number | Date | Country | |
---|---|---|---|
20140307988 A1 | Oct 2014 | US |