The present subject matter relates generally to linear hinges.
Integrated refrigerator appliances allow panels to be mounted on doors of the integrated refrigerator appliances. The panels may sit flush with adjacent cabinetry when the doors are closed. The doors in integrated refrigerator appliances are frequently mounted on hinges such that the doors rotate open and closed.
Linear hinges allow the doors to translate away from adjacent cabinetry in addition to rotating open and closed. By translating in addition to rotating, interference between the doors and the adjacent cabinetry can be avoided. However, known linear hinges have several drawbacks, such as being bulky and allowing hard slamming of the doors.
Aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In a first example embodiment, an appliance includes a cabinet and a door. A linear hinge couples the door to the cabinet. The linear hinge includes a bearing mounted to the cabinet. An elongated shaft is received within the bearing such that the elongated shaft is slidable along a translation axis on the bearing. A distal end portion of the elongated shaft is rotatably connected to the door such that the door is rotatable about a rotation axis that extends through the distal end portion of the elongated shaft. The linear hinge also includes a pair of linkage arms. A first linkage arm of the pair of linkage arms is rotatably connected to the bearing such that a first end portion of the first linkage arm is positioned at the bearing. A second linkage arm of the pair of linkage arms is rotatably connected to the elongated shaft such that a first end portion of the second linkage arm is positioned at the distal end portion of the elongated shaft. The first linkage arm is rotatably connected to the second linkage arm such that a second end portion of the first linkage arm is positioned at a second end portion of the second linkage arm. The first linkage arm defines a length between the first and second end portions of the first linkage arm, and the second linkage arm defines a length between the first and second end portions of the second linkage arm. The distal end portion of the elongated shaft is spaced from the bearing by a gap along the translation axis when the door is closed, and a sum of the length of the first linkage arm and the length of the second linkage arm is greater than the gap.
In a second example embodiment, an appliance includes a cabinet and a door. A linear hinge couples the door to the cabinet. The linear hinge includes a bearing mounted to the cabinet. An elongated shaft is received within the bearing such that the elongated shaft is slidable along a translation axis on the bearing. A distal end portion of the elongated shaft is rotatably connected to the door such that the door is rotatable about a rotation axis that extends through the distal end portion of the elongated shaft. The linear hinge also includes a pair of linkage arms. A first linkage arm of the pair of linkage arms is rotatably connected to the bearing such that a first end portion of the first linkage arm is positioned at the bearing. A second linkage arm of the pair of linkage arms is rotatably connected to the elongated shaft such that a first end portion of the second linkage arm is positioned at the distal end portion of the elongated shaft. The first linkage arm is rotatably connected to the second linkage arm such that a second end portion of the first linkage arm is positioned at a second end portion of the second linkage arm. The first linkage arm defines a length between the first and second end portions of the first linkage arm, and the second linkage arm defines a length between the first and second end portions of the second linkage arm. The length of the second linkage arm is oriented perpendicular to the translation axis when the door is closed. The distal end portion of the elongated shaft is spaced from the bearing by a gap along the translation axis when the door is closed, and a sum of the length of the first linkage arm and the length of the second linkage arm is greater than the gap. The length of the first linkage arm is greater than the length of the second linkage arm. The length of the first linkage arm and the length of the second linkage arm are selected such that the door translates along the translation axis as the door rotates from a closed position towards an open position.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
In certain example embodiments, appliance 100 may be a refrigerator appliance. Thus, e.g., cabinet 110 may be an insulated cabinet with a chilled chamber 112 positioned within cabinet 110. A sealed system (not shown) may be operable to cool chilled chamber 112 and food items stored therein. It will be understood that appliance 100 may be any other type of appliance in alternative example embodiments. In particular, while described in greater detail below in the context of appliance 100, it will be understood that linear hinge 200 may be used in or with any suitable appliance in alternative example embodiments. For example, linear hinge 200 may be used in or with French door oven appliances, dishwasher appliances, etc. to mount a door to a cabinet, such as a base, a tub, etc. As discussed in greater detail herein, linear hinge 200 includes features for limiting hard slamming of door 120 and/or is less bulky than known hinges.
A distal end portion 222 of elongated shaft 220 may be cantilevered from bearing 210, and distal end portion 222 of elongated shaft 220 is rotatably connected to door 120. In particular, door 120 is rotatable about a rotation axis R that extends through distal end portion 222 of elongated shaft 220. The rotation axis R may be perpendicular to the translation axis T. For example, the rotation axis R may be vertically oriented, and the translation axis T may be horizontally oriented.
As shown in
Linkage arms 230 couple elongated shaft 220 to bearing 210 to induce sliding of elongated shaft 220 along the translation axis T on bearing 210 (and thus door 120) as door 120 is rotated open about the rotation axis R. A first linkage arm 232 of linkage arms 230 is rotatably connected to bearing 210. In particular, a first end portion 240 of first linkage arm 232 is positioned at and rotatably connected to bearing 210. A second linkage arm 234 of linkage arms 230 is rotatably connected to elongated shaft 220. In particular, a first end portion 250 of second linkage arm 234 is positioned at and rotatably connected to distal end portion 222 of elongated shaft 220. First linkage arm 232 is also rotatably connected to second linkage arm 234. In particular, a second end portion 242 of first linkage arm 232 is positioned at and rotatably connected to a second end portion 252 of second linkage arm 234.
In certain example embodiments, elongated shaft 220 includes a post 224 at distal end portion 222 of elongated shaft 220. Post 224 may extend or be elongated along the rotation axis R. Door 120 is rotatably connected to post 224 at one end of post 224, and second linkage arm 234 is rotatably connected to post 224 at the opposite end of post 224. For example, the one end of post 224 may be received within a hole defined by a bracket 124 of door 120 (e.g., on a top edge 126 of door 120), and the opposite end of post 224 may be received within a hole defined by second linkage arm 234 at first end portion 250 of second linkage arm 234.
First linkage arm 232 defines a length between first and second end portions 240, 242 of first linkage arm 232. Similarly, second linkage arm 234 defines a length between first and second end portions 250, 252 of second linkage arm 234. Distal end portion 222 of elongated shaft 220 is also spaced from bearing 210 by a gap G (
The length of first linkage arm 232 and the length of second linkage arm 234 may be selected to induce door 120 to translate along the translation axis T as the door rotates from a closed position (shown in
The length of second linkage arm 234 may also be oriented perpendicular to the translation axis T when door 120 is closed, as shown in
First linkage arm 232 may include a pinch guard 260. Pinch guard 260 is positioned over a portion of elongated shaft 220 between bearing 210 and distal end portion 222 of elongated shaft 220 when door 120 is closed. Thus, pinch guard 260 may block fingers from being inserted between elongated shaft 220 and linkage arms 230 when door 120 is opened and/or closed. Pinch guard 260 may have a circular segment shape and/or may be a single piece of metal. Thus, pinch guard 260 may be integrally formed with first linkage arm 232 in certain example embodiments.
Elongated shaft 220 may also define a slot 226 that extends along the translation axis T on elongated shaft 220. Bearing 210 may have a guide 212 positioned within slot 210. Guide 212 may be a pin, shaft, etc. that constrains rotation of elongated shaft 220. In particular, guide 212 is configured to prevent rotation of elongated shaft 220 on bearing 210, e.g., about the translation axis T. Thus, e.g., interference between guide 212 and elongated shaft 220 at slot 210 may block rotation of elongated shaft 220 relative bearing 210.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5040857 | Mandel | Aug 1991 | A |
6845545 | Han et al. | Jan 2005 | B2 |
10822852 | Nuss | Nov 2020 | B1 |
20040040118 | Han | Mar 2004 | A1 |
20050212392 | Jung | Sep 2005 | A1 |
20100283367 | Coleman | Nov 2010 | A1 |
20160245579 | Eom | Aug 2016 | A1 |
20180148962 | Jung | May 2018 | A1 |
20180283077 | Lee | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
104949442 | Sep 2015 | CN |
2712995 | Aug 2015 | EP |
20040006118 | Jan 2004 | KR |
20130119274 | Oct 2013 | KR |
Number | Date | Country | |
---|---|---|---|
20200217115 A1 | Jul 2020 | US |