The invention relates to linear lighting, and in particular, to linear lighting with selectable light output levels.
Linear lighting is a class of lighting based on light-emitting diodes (LEDs) in which an elongate, narrow printed circuit board (PCB) is populated with a plurality of LED light engines, typically spaced from one another at a regular pitch or spacing. In much of the linear lighting on the market, the LED light engines are surface-mounted on the PCB, along with other components. The PCB itself may be either rigid or flexible.
Combined with an appropriate power supply, linear lighting may be considered a luminaire (i.e., a finished light fixture) in its own right. It may also be used as a raw material for the manufacture of other, more complex, luminaires.
The most popular form of linear lighting is flexible, cuttable linear lighting. In this form of linear lighting, a flexible PCB is divided into repeating blocks at defined cut points. Each repeating block is a self-contained lighting circuit that will light if connected to power. The cut points allow a manufacturer or an installer to choose the desired length of linear lighting by cutting the flexible PCB at the desired cut point and connecting the resulting length of linear lighting to power.
Linear lighting is typically a low-voltage product, operating at, e.g., 12 or 24 volts, direct current (DC), although for purposes of this description, the term “low voltage” refers to any voltage under about 50V. At a given voltage level, each repeating block of a strip of linear lighting is designed to provide a certain level of light output per repeating block, typically measured in lumens, a unit of luminous flux.
The circuitry in a typical strip of linear lighting is often simple, designed to produce a single level of light output per repeating block. If different or varied levels of light output are desired, there are two typical solutions. The first potential solution is to use an external device, such as a pulse-width modulation (PWM) dimmer, to vary light output. Yet the typical consumer-use household or commercial PWM dimmer is designed for large power loads, tends to be bulky and relatively expensive, and is not appropriate for many applications in which lower light output is desired from a strip of linear lighting.
The second potential solution is to manufacture a strip of linear lighting that is engineered to produce a lower light output. However, making a greater variety of products is not an elegant solution to the problem of varying the light output of linear lighting—it simply forces manufacturers and installers to stock a wider variety of products. Moreover, neither of these potential solutions are of much comfort to an installer who, after installing a strip of linear lighting, finds that it is simply too bright for the application and has to go to the trouble of ripping it out and installing a new one.
Aspects of the invention relate to lighting circuits for LED lighting, and to strips of linear lighting using these circuits. A lighting circuit according to one aspect of the invention includes a plurality of LED light engines, at least two current-setting elements, and a plurality of terminals. The plurality of terminals are electrically coupled to the at least two current-setting elements such that a light output of the lighting circuit is determined by which of the plurality of terminals are connected to power.
In one embodiment, the current-setting elements are resistors, several of which are arranged electrically in series with one another and with the LED light engines. The plurality of terminals includes several terminals at the cathode end of the strip of linear lighting, interposed between the resistors, such that the resistance in the circuit, and thus, the light output, are determined based on which resistor or resistors are connected within the circuit.
In another embodiment, the current-setting elements in the circuit are arranged in parallel with one another, and each of the current-setting elements is connected to its own terminal at the cathode end of the strip of linear lighting. The current in the circuit and the light output are determined based on which terminal or terminals are connected to power. The current-setting elements may be either resistors or current-setting integrated circuits.
Strips of linear lighting according to these aspects of the invention typically include an elongate, narrow printed circuit board (PCB) that is divided physically and electrically into repeating blocks, which are separated from one another at cut points. Each repeating block is a complete lighting circuit the features described above.
Another aspect of the invention relates to a lighting circuit that, in addition to a plurality of LED light engines and a current-setting element, has a transistor, and to strips of linear lighting that incorporate this lighting circuit. The lighting circuit has connections for power, and a separate control or signal input terminal that provides a voltage signal to the gate of the transistor. The transistor acts as a switch, allowing power to flow through the lighting circuit or preventing it from flowing based on the voltage signal supplied to its gate. This allows the lighting circuit to be driven by, e.g., an external pulse-width modulation (PWM) signal generator.
Other aspects, features, and advantages of the invention will be set forth in the description that follows.
The invention will be described with respect to the following drawing figures, in which like numerals represent like features throughout the description, and in which:
As the term is used here, “LED light engine” refers to an element in which one or more light-emitting diodes (LEDs) are packaged, along with wires and other structures, such as electrical contacts, that are needed to connect the light engine to a PCB. If the light engine is intended to emit “white” light, it may be a so-called “blue pump” light engine in which a light engine containing one or more blue-emitting LEDs (e.g., InGaN LEDs) is covered with a phosphor, a chemical compound that absorbs the emitted blue light and re-emits a broader or a different spectrum of wavelengths. In the illustrated embodiment, the light engines 14 are surface-mount devices (SMDs) soldered to the PCB 12, although other types of light engines may be used. The particular type of light engine is not critical, and other types of light engines may be used. While multi-color RGB LED light engines that can emit a variety of colors may be used in embodiments of the invention, much of this description will assume that the LED light engines emit light of a single color.
In
The linear lighting 10 is divided into repeating blocks 16. Each repeating block 16 is a complete lighting circuit that will light if connected to power. The repeating blocks 16 can be separated from one another at cut points 18. In the illustration of
Typically, most PCBs for linear lighting are on the order of 5-14 mm wide, although narrower and wider PCBs do exist. By joining sections of PCB 12 together at overlapping solder joints, a strip of linear lighting 10 may be made arbitrarily long. For example, 4 meter (16.4 foot) rolls of linear lighting are common in the industry, and 30 meter (100 foot) rolls of linear lighting are not unknown. Longer rolls of linear lighting 10 may be helpful for manufacturers and installers who use the product in great quantities; the functional maximum usable length (in industry parlance, the maximum run length) of any particular strip of linear lighting 10 may depend on a number of factors, and will be described in greater detail below.
In this embodiment, the devices in each repeating block 16 are relatively few: there are six LED light engines 14 and four resistors 24, 26, 28, 30. The resistors 24, 26, 28, 30 are typically mounted in the interstitial space between LED light engines 14 or along the sides of the PCB 12. Like the LED light engines 14, the resistors 24, 26, 28, 30 are SMDs, and may be, e.g., 0805 resistors.
The resistors 24, 26, 28, 30 of the linear lighting 10 are but one example of a broader class of current-setting elements. As those of skill in the art will appreciate, LED light engines 14 require some element to set the current in the circuit. This may be done in the power supply (i.e., in the driver), or it may be done by adding components to the PCB 12 itself to set the current flow. Linear lighting that is designed to be used with an external driver that controls the current flow is called “constant current” linear lighting. Linear lighting that is designed to control the current flow using its own on-board circuits is often referred to as “constant voltage” linear lighting. Constant-current linear lighting is often used when the length of the linear lighting is known in advance; constant-voltage linear lighting is more versatile and more easily used in situations where the length, and resulting current draw, is unknown or is likely to vary from one installation to the next. This description assumes that the linear lighting 10 is constant-voltage linear lighting; thus, the presence of the resistors 24, 26, 28, 30. Some of the resistors 24, 26, 38, 30 have an additional purpose that will be described in greater detail below.
The circuit of
In each repeating block 16, the first two resistors 24, 26 perform the usual function of setting the current in the circuit. These may be, e.g., 240 resistors capable of handling, e.g., 65 mW of power. Of course, the values of the resistors and their power tolerances will vary considerably from embodiment to embodiment. Since the two resistors 24, 26 are in series with one another within the repeating block, they could be replaced by a single resistor with a resistance that is the additive sum of the resistances of the two smaller resistors. That single resistor would have an appropriate power tolerance. The advantage of dividing the total resistance and physically spacing it along the PCB 12 is heat dissipation: having two resistors 24, 26 creates two less-hot spots that are spaced along the PCB 12. For that reason, the necessary resistance could be divided among any number of resistors, spaced along the PCB 12.
The six LED light engines 14 and two resistors 24, 26 form a full, conventional constant-voltage lighting circuit. However, there are two additional resistors 28, 30 placed electrically in series with one another and with the other components 14, 24, 26 of the repeating block 16. The repeating block 16 is also arranged so that there are a number of terminals 34, 36, 38 at the cathode end of the strip of linear lighting 10, with terminal 34 positioned in series before the two additional resistors 28, 30, terminal 36 placed in series between the first additional resistor 28 and the second additional resistor 30, and terminal 38 placed in series after the third additional resistor 30.
As shown in
Typically, when connecting the strip of linear lighting 10 to power, an installer will use the set of solder pads 22 that is closest to one end of the strip of linear lighting 10. However, that need not always be the case. Because of the arrangement of the repeating blocks 16 and the presence of a power bus within the strip of linear lighting 10, any set of solder pads 22 along the strip of linear lighting 10 may be used. Additionally, in many strips of linear lighting, conductors are accessible from the bottom of the strip; therefore, there is no requirement that the solder pads 22 or other such contacts be on the upper surface of the strip of linear lighting 10.
Furthermore, much of this description assumes that the strip of linear lighting 10 is powered from a single set of solder pads 22 at one end of the strip of linear lighting 10. This need not be the case in all embodiments. If desired, power could be input simultaneously in multiple places along the strip of linear lighting 10 using any of the sets of solder pads 22 found along its length. The advantage of powering the strip of linear lighting 10 in this way is that it the light output disparity between one end of the strip of linear lighting 10 and the other would be reduced, thereby extending the maximum run length.
In any working circuit, only one of the three terminals 34, 36, 38 need be connected. With the arrangement shown in
In the illustrated embodiment, resistor 28 has a resistance equal to the additive sum of the resistances of the two resistors 24, 26 in the main portion of the repeating block 16. If terminal 36 is connected, placing resistor 28 in the circuit, the light output would drop to one-half of the full light output. Resistor 30 has a resistance that is the additive sum of the resistances of the resistors 24, 26, 28. If terminal 38 is connected, placing both resistors 28, 30 in the circuit, the light output would drop to one-quarter of the full light output. Both of the additional resistors 28, 30 have appropriate power capacities—for example, if the main resistors 24, 26 are 65 mW resistors, resistor 28 may have a power capacity of 32 mW and resistor 30 may have a power capacity of 18 mW.
As a practical matter, this means that a manufacturer or an installer can choose the light output of the strip of linear lighting 10 from among a number of options at the time of manufacture or installation by choosing which of the terminals 34, 36, 38 to use in connecting the strip of linear lighting 10 to the power circuit. This may be done by soldering, by using a connector, or by any other means of making an electrical connection. As those of skill in the art will realize, while three terminals 34, 36, 38 are shown in this embodiment, there is no theoretical limit on the number of terminals, and thus, luminance options, that may be provided, but for practical reasons, it is helpful if the resulting terminals 34, 36, 38 are large enough to be used. Additionally, in this embodiment, the terminals 34, 36, 38 are cathodic terminals. That is not the only possible configuration and, as was noted briefly above, the sense of the circuit may be reversed and the terminals may be anodic terminals.
The actual resistances of the resistors 24, 26, 28, 30, and their power capacities, may vary considerably from embodiment to embodiment. In particular, for reasons of perception, it may be desirable to have light output levels other than full, one-half, and one-quarter, or to base the definitions of full, one-half, and one-quarter on perceived brightness, rather than luminous flux. In most practical embodiments, it is the perception of brightness to a human (or other animal) observer that matters, and not the luminous flux of the lighting source or the luminance of an area or object. Brightness is not necessarily proportional to luminous flux or luminance, and there are even cases in which a light source that emits a lesser luminous flux may be perceived as brighter than another light source that emits a greater luminous flux. As one example, the Helmholtz-Kohlrausch effect is a perceptual phenomenon in which intensely saturated colors are seen by the human eye as brighter than white light. For these reasons, even if full, one-half, and one-quarter are desired light output levels for a strip of linear lighting, the meanings of those terms, and the resulting resistance values of the resistors, may be chosen with respect to perceived brightness, rather than luminous flux or luminance.
In the embodiment of
Each repeating block 102 has six LED light engines 14, a configuration which, like the one above, assumes 24V DC input power with about a 3-3.3V forward voltage for each LED light engine 14. The difference in the strip of linear lighting 100 relative to the strip of linear lighting 10 described above lies in the configuration of the resistors 104, 106, 108. As can be seen in
The repeating block 102 has three terminals 110, 112, 114 at the cathode end of the strip of linear lighting 100, each one connected to one of the resistors 104, 106, 108. As described above, these terminals 110, 112, 114 may be part of a set of solder pads on the upper surface of a PCB 12, although other arrangements are possible. The fourth terminal 116 is the anode, which may also be a solder pad. As with the embodiment described above, the sense of the circuit may be reversed such that in some cases, the terminals 110, 112, 114 are anodic and the fourth terminal 116 is the cathode.
In the arrangement of
As was noted above, resistors are but one example of current-setting devices that may be used in linear lighting circuits, and embodiments of the invention may include other types of current-setting devices. For example,
The difference in the repeating blocks 202, as compared with those of other embodiments, lies in their current-setting components. Instead of resistors 104, 106, 108, each repeating block 202 has three current source/driver integrated circuits 204, 206, 208. As in the strip of linear lighting 100 of
The integrated circuits 204, 206, 208 perform the current-setting function in the strip of linear lighting 200, serving as constant current drivers for the LED light engines 14. Typically, each integrated circuit 204, 206, 208 is designed to supply a different current level. The current levels may be, e.g., 2 mA, 4 mA, and 8 mA, for example, although as explained above, the current levels may be chosen in accordance with the perception of brightness, rather than the luminous flux they allow. As with the linear lighting 100 of
While current-setting ICs 204, 206, 208 may be slightly more expensive than resistors, it is possible that their use may result in a lower total resistance and allow for longer maximum run lengths.
There is a commonality in all of these embodiments: each repeating block includes at least one additional terminal, coupled to at least one additional current-setting element, be it a resistor or a current-control IC, and the terminal or terminals that are actually connected to the circuit determine the ultimate light output of the repeating block and of the strip of linear lighting as a whole.
As those of skill in the art will note, all of the above-described embodiments assume a DC voltage input. However, there are situations in which a time-varying voltage is used with linear lighting, e.g., the use of a pulse-width modulation (PWM) signal in order to change the duty cycle and effective light output of a strip of linear lighting.
Certain embodiments of the invention may include a component or components to make the strip of linear lighting more compatible with PWM signals, as well as other types of time-varying signals.
Each repeating block 302 has one additional component that, like the others, may be, e.g., surface mounted on the PCB 12 of the strip of linear lighting 300: a transistor, specifically an N-channel CMOS field-effect transistor (FET) 310. The drain 312 of the transistor 310 is connected to the cathode end of the strip of linear lighting 300 and the source 314 is connected to ground 308. The gate 316 of the transistor 302 is connected to a signal line 318 that runs the length of the strip of linear lighting 300 in parallel with power 306 and ground 308. The signal line 318 would typically have a terminal in the sets of solder pads 22 on the top surface of the PCB 12, although as was described above, other locations are possible.
Arranged this way in each repeating block 302, the transistor 310 acts as a switch. If the signal 318 applied to the gate 316 of the transistor 310 is equal to or exceeds the threshold voltage of the transistor 310, current flows through the circuit. The threshold gate-to-source voltage of a typical transistor 310 is typically much lower than the voltage used to drive the repeating blocks 302, e.g., about 1.5 volts. Thus, the strip of linear lighting 300 of
In order to create an appropriate control signal, the strip of linear lighting 300 may be connected to a signal generator 320, such as a PWM signal generator. This may take the form of a small module connected to one end of the strip of linear lighting 300. Of course, any other type of signal generator may be used, and in some embodiments, signals other than PWM may be used, e.g., to create a strobing effect or some other desired lighting effect.
With any oscillating signal, there is always a risk of generating electromagnetic interference. The sharp corners of a square-wave PWM signal may increase this risk. If necessary, each repeating block 302 may include a capacitor, or another such filtering element, to smooth the signal somewhat and reduce the possibility of electromagnetic interference. The control signal may also be programmed with slower rise and fall times to reduce electromagnetic interference.
There are several potential advantages to the arrangement shown in
While the invention has been described with respect to certain embodiments, the description is intended to be exemplary, rather than limiting. Modifications and changes may be made within the scope of the invention, which is defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5758947 | Glatt | Jun 1998 | A |
6461008 | Pederson | Oct 2002 | B1 |
6600274 | Hughes | Jul 2003 | B1 |
8905579 | Dobbins | Dec 2014 | B2 |
10028345 | Petersen | Jul 2018 | B2 |
10041636 | Petersen | Aug 2018 | B2 |
10066792 | Del Castillo | Sep 2018 | B2 |
10194496 | Rogers | Jan 2019 | B2 |
20050213321 | Lin | Sep 2005 | A1 |
20060133076 | Sloan | Jun 2006 | A1 |
20120326634 | Li | Dec 2012 | A1 |
20130107526 | Ishibashi | May 2013 | A1 |
20130313983 | Radermacher | Nov 2013 | A1 |
20140247595 | Lind | Sep 2014 | A1 |
20150092413 | Li | Apr 2015 | A1 |
20160138768 | Greene | May 2016 | A1 |
20160178173 | Yadav | Jun 2016 | A1 |
20180031190 | Nicolai | Feb 2018 | A1 |
20190032870 | Qiu | Jan 2019 | A1 |
20190320515 | Sadwick | Oct 2019 | A1 |
20200284403 | Grave | Sep 2020 | A1 |
Entry |
---|
U.S. Appl. No. 63/069,875, filed Aug. 25, 2020, Irons. |