1. Field of the Invention
The present invention relates to an artificial oil lift system and more specifically, to a linear motor automatic control circuit assembly for controlling the operation of a 3-phase linear motor-driven submersible oil pump of an artificial oil lift system.
2. Description of the Related Art
Beam/sucker-rod pumping is the most popular artificial lift in oil well for the production of crude oil today. A beam/sucker-rod pumping system has a submersible oil pump set in the oil well, and a rotary motor mounted on the ground to cause the walking beam to pivot up and down. The walking beam causes the sucker rod string attached to opposite end of the walking beam to rise and fall. This activates the submersible oil pump which lifts the oil up to the ground surface. The speed of the submersible oil pump that is installed in an oil well is adjustable by the worker at the ground. Further, the depth of the oil level in an oil well may change subject to the geological structure and the status of flowing of fluid into the oil well. Conventionally, the control of pump speed of a submersible oil pump in an oil well is done subject to the submergence depth of the submersible oil pump, and the measurement of the depth of the oil level is done externally with a independent acoustic echo device. When adjusting the pump speed of a submersible oil pump in an oil well, the whole artificial lift system must be stopped. Further, the adjustment of the pump speed is complicated and limited to discrete stroke number adjustment. A continuous pump speed adjustment is not workable.
U.S. Pat. No. 731,627 discloses an oil pumping unit using a submersible oil pump driven by a synchronizing three-phase linear motor. According to this design, the oil pumping unit uses a synchronizing linear motor to reciprocate a pump, causing the pump to lift the oil from the oil well to the ground continuously during the down stroke as well as during the up stroke.
It is one object of the present invention to provide a liner motor automatic control assembly for artificial oil lift system, which controls the operation speed of the linear motor of the artificial oil lift system subject to the submergence depth of the linear motor in the oil well.
To achieve this and other objects of the present invention, the linear motor automatic control circuit assembly is connected to a 3-phase linear motor of a submersible oil pump of an artificial oil lift system, comprising a linear motor power supply circuit, a CPU, an insulated gate bipolar transistor driving circuit, a current detection circuit, a fluid depth sensor, a function setting and status display circuit, and a circuit assembly power supply circuit, the linear motor power supply circuit being comprised of a 3-phase rectifier, a charging resistor, a filter and three insulated gate bipolar transistors and adapted to provide power supply to the linear motor, the insulated gate bipolar transistor driving circuit being electrically connected between the CPU and the insulated gate bipolar transistors of the linear motor power supply circuit and adapted for controlling on, off and speed of the linear motor, the current detection circuit being electrically connected between the CPU and current transformers at a front side of the linear motor power supply circuit and adapted for detecting the current value at the linear motor and providing the detected current value to the CPU for overcurrent protection control, the fluid depth sensor being electrically connected to the CPU and adapted for detecting the depth of the oil level in the oil well and providing the detected value to the CPU for reference in controlling the operation of the linear motor, the function setting and status display circuit being electrically connected to the CPU for setting system function parameters and displaying the settings and the status of the operation of the system, the circuit assembly power supply circuit providing the linear motor automatic control circuit assembly with the necessary working voltage.
Referring to
In one example of the present invention as shown in
In one example of the present invention as shown in
In one example of the present invention as shown in FIG. 4 again, the current detection circuit 50 is comprised of three operation amplifiers OP1, OP2, a plurality of resistors R, capacitors C and variable resistors VR. The current detection circuit 50 is electrically connected to the current transformers CT at the front side of the linear motor power supply circuit 20 to detect the current value at the linear motor M and to provide the detected current value to the CPU 30 for overcurrent protection control.
In one example of the present invention as shown in
In one example of the present invention as shown in
In one example of the present invention as shown in FIG. 7 again, the function setting and status display circuit 100 is comprised of LED indicator lights, resistors R, diodes D, key pad S and transistors Q5. The key pad S is provided for inputting the desired settings. The LED indicator lights are controllable to indicate system operation status.
In one example of the present invention as shown in
Further, the linear motor M is coupled to the top side of the submersible oil pump. During vertical reciprocation of the linear motor M, the submersible oil pump is moved to pump crude oil. The CPU 30 outputs a control signal to the insulated gate bipolar transistor driving circuit 40 to turn on the insulated gate bipolar transistors IGBT1, IGBT2, IGBT3, thereby causing the linear motor M to move the submersible oil pump. During operation of the linear motor M, the current detection circuit 50 monitors the current value at the linear motor M, the temperature sensor 70 monitors the temperature of the insulated gate bipolar transistors, and the fluid depth sensor 110 monitors the depth of the oil level in the oil well.
The fluid depth sensor 110 outputs the detected value to the CPU 30 for enabling the CPU 30 to measure the submergence depth of the linear motor in the crude oil in the oil well so that the CPU 30 controls the operation speed of the linear motor subject to the measured result, keeping the crude oil production rate in balance with the pumping flow rate of the oil pump and preventing damage of the linear motor. If the submergence depth of the linear motor is smaller than the predetermined lower limit level, the CPU 30 immediately stops the operation of the linear motor and will start the linear motor again when the submergence depth of the linear motor surpasses the predetermined lower limit level.
The current detection circuit 50 monitors the current value at the linear motor M, and outputs the detected result to the CPU 30. When the current at the linear motor M surpassed a predetermined level, the CPU 30 starts the overload protection function to stop the linear motor M and to turn on the buzzer 80, causing the buzzer 80 to output an audio alarm signal.
When the temperature of the insulated gate bipolar transistors IGBT1, IGBT2, IGBT3 surpassed a predetermined value, the temperature sensor 70 immediately sends a signal to the CPU 30, causing the CPU 30 to start the cooling fan. If the temperature of the insulated gate bipolar transistors IGBT1, IGBT2, IGBT3 does not drop below the predetermined value after a predetermined length of time during the operation of the cooling fan, the CPU 30 immediately switches off the master solenoid switch, thereby turning off the linear motor M and driving the buzzer 80 to output an audio alarm signal.
Although a particular embodiment of the invention has been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.