The subject matter disclosed herein relates generally to the field of elevators, and more particularly, to a linear motor stator core for a self-propelled elevator.
Self-propelled elevator systems, also referred to as ropeless elevator systems, are useful in certain applications (e.g., high rise buildings) where the mass of the ropes for a roped system is prohibitive and/or there is a need for multiple elevator cars in a single hoistway.
According to an exemplary embodiment, an elevator system includes a hoistway; an elevator car to travel in the hoistway; permanent magnets mounted to one of the elevator car and the hoistway; and a stator mounted to the other of the elevator car and the hoistway, the stator including windings coacting with the permanent magnets to control motion of the elevator car in the hoistway, the stator having a stator core supporting the windings, the stator core being electrically non-conductive.
According to another exemplary embodiment, a propulsion system for an elevator system includes a stationary portion configured to be fixed a hoistway wall; and a moving portion configured to be fixed to an elevator cab; wherein one of the stationary portion and the moving portion comprises permanent magnets and the other of the stationary portion and the moving portion comprises windings; and wherein the permanent magnets and the windings are configured to coact to control the movement of the moving portion relative to the stationary portion.
Other aspects, features, and techniques of embodiments of the invention will become more apparent from the following description taken in conjunction with the drawings.
Referring now to the drawings wherein like elements are numbered alike in the FIGURES:
A controller 20 provides drive signals to the stator(s) 18 to control motion of the elevator car 12. Controller 20 may be implemented using a general-purpose microprocessor executing a computer program stored on a storage medium to perform the operations described herein. Alternatively, controller 20 may be implemented in hardware (e.g., ASIC, FPGA) or in a combination of hardware/software. Controller 20 may also be part of an elevator control system. Controller 20 may include power circuitry (e.g., an inverter or drive) to power the stator(s) 18.
Stator core 104 is electrically non-conductive. In exemplary embodiments, stator core 104 may be constructed from an electrically non-conductive member having a desired shape. For example, a plastic, hollow member may be used for stator core 104. A hollow, at least partially, stator core 104 may be used to route wires, cables, etc., through hoistway 14. The plastic member may be filled with a curable material (e.g., concrete) to improve its strength. Other embodiments, described herein, include an electrically non-conductive, ferromagnetic stator core.
Permanent magnet support 200 is arranged in a delta shape, having a first wall 202, second wall 204 and third wall 206. Permanent magnets 19 are mounted on the interior surfaces of first wall 202, second wall 204 and third wall 206. In alternate embodiments, permanent magnets 19 are embedded in the permanent magnet support 200. Permanent magnets 19 are positioned to be adjacent to and parallel with faces of stator 100. Second wall 204 and third wall 206 each have a first end joining first wall 202. Second wall 204 and third wall 206 taper towards each other with distance from first wall 202. Second wall 204 and third wall 206 each have a distal, second end, such that the distance between the second ends of the second wall 204 and third wall 206 is less than the distance between the first ends of the second wall 204 and third wall 206. Second wall 204 and third wall 206 may be planer or non-planer (e.g. having a bend, as shown in
Stator core 114 is electrically non-conductive. In exemplary embodiments, stator core 114 may be constructed from an electrically non-conductive member having a desired shape. For example, a plastic, hollow member may be used for stator core 114. A hollow, at least partially, stator core 114 may be used to route wires, cables, etc., through hoistway 14. The plastic member may be filled with a curable material (e.g., concrete) to improve its strength. Other embodiments, described herein, include an electrically non-conductive, ferromagnetic stator core.
Permanent magnet support 210 is arranged in a U shape, having a first wall 212, second wall 214 and third wall 216. Permanent magnets 19 are mounted on the interior surfaces of first wall 212, second wall 214 and third wall 216. In alternate embodiments, permanent magnets 19 are embedded in the permanent magnet support 210. Permanent magnets 19 are positioned to be adjacent to and parallel with faces of stator 110. Second wall 214 and third wall 216 each have a first end joining first wall 212. Second wall 214 and third wall 216 are perpendicular to first wall 212. First wall 212 is longer than both second wall 214 and third wall 216.
Stator core 124 is electrically non-conductive. In exemplary embodiments, stator core 124 may be constructed from an electrically non-conductive member having a desired shape. For example, a plastic, hollow member may be used for stator core 124. A hollow, at least partially, stator core 124 may be used to route wires, cables, etc., through hoistway 14. The plastic member may be filled with a curable material (e.g., concrete) to improve its strength. Other embodiments, described herein, include an electrically non-conductive, ferromagnetic stator core.
Permanent magnet support 220 is arranged in a double I shape, having a first wall 222, second wall 224 and third wall 226. Permanent magnets 19 are mounted on the interior surfaces of second wall 224 and third wall 226. In alternate embodiments, permanent magnets 19 are embedded in the permanent magnet support 220. Permanent magnets 19 are positioned to be adjacent to and parallel with faces of stator 120. Second wall 224 and third wall 226 each have a first end joining first wall 222. Second wall 224 and third wall 226 are perpendicular to first wall 222. First wall 22 is shorter than both second wall 224 and third wall 226.
In the above described embodiments, the stator is stationary and mounted in the hoistway 14 while the permanent magnets are mounted to elevator car 12. The linear motor can be also designed with the stator mounted to the elevator car 12 and the permanent magnets mounted along the hoistway 14.
It is noted that the stator cores 104, 114 and 124 are toothless, meaning the stator does not rely on poles or other extensions with windings formed thereon. Rather, stator cores 104, 114 and 124 have continuous, planar surfaces. The toothless structure provides a low dependency of motor performance on size of the non-magnetic gap (i.e., the mechanical clearance between stationary stator and moving permanent magnets mounted on the elevator cars). This allows the linear motor to be designed with comfortable clearances between long stationary stators and permanent magnets mounted to moving cars. In addition, the toothless structure of the stator eliminates any cogging forces present in typical linear motor structures. Cogging forces modulating the linear motor are a frequent source of vibration and noise in elevator systems.
Additional embodiments employ a stator core that is electrically non-conductive and is ferromagnetic. A stator core utilizing electrically non-conductive, ferromagnetic material offers a reduced size linear motor along the hoistway. In one embodiment, the stator core is made from a sintered soft magnetic composition of ferromagnetic powder (e.g., Somaloy™). In another embodiment, the stator core is made from a mixture of a curable material (e.g., resin) and soft ferromagnetic powder. In another embodiment, the stator core is made from a mixture of a curable material (e.g., polymers and/or concrete) with a ferromagnetic material (e.g., ferromagnetic powder and/or ferromagnetic metal). In another embodiment, the stator core is made from laminated steel sheets.
Embodiments of the invention provide numerous benefits. Embodiments described herein provide a linear motor having reduced dimensions when compared to possible other solutions. The smaller size offers lower mass of electromagnetically active materials, controlling the cost and space utilization in the hoistway. Manufacturing the stator core is simplified. Large elements of the stator core may be fabricated (1) with a sintering process (2) by injection molding of mixed ferromagnetic material with epoxy resins or (3) by partial encapsulation of the stator module with mixed plastic/concrete/ferromagnetic powder. Using an electrically non-conductive, ferromagnetic stator core increases the magnetic field in the motor air gap which leads to a decrease of excitation current and lower conductive losses. Moreover, the electrically non-conductive, ferromagnetic stator core eliminates eddy currents in the stator core which further reduces power losses and heat generated in the stator core when compared to a laminated steel core.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. While the description of the present invention has been presented for purposes of illustration and description, it is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications, variations, alterations, substitutions, or equivalent arrangement not hereto described will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. Additionally, while the various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as being limited by the foregoing description, but is only limited by the scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/039615 | 5/6/2013 | WO | 00 |