PRIORITY DATE OF DEC. 27, 2004
This application is submitted under and claims a priority date of Dec. 27, 2004 to a Chinese Patent Application with associated Patent Number 200420120573.x with filing date of Dec. 27, 2004 and claims priority thereto.
1. Field of the Invention
The present invention relates to the field of gauges and specifically to an electronic twin column height gauge using new technology offering high accuracy of measurements.
2. Brief Description of the Related Art
The measuring technology as applied to electronic twin column height gauges as they currently exist on the market today use a rotary senor system of racks and gears. Racks are usually flat toothed racks (usually located on twin beams) and are geared up with a gear (usually located inside the display unit) thereby creating vertical up and down movements.
The electronic twin column height gauges on the market today utilize a rotary capacitive sensor that is located on the gear that measures the rotations of the gear and transfers the data to a data processor (usually located inside the display unit) which converts the rotary data to linear measurement units and an LCD (liquid crystal display) display will display the readings. The readings are obtained from a rotary moving capacitance system, transforming measurements from a gear and rack.
The flat toothed rack located on these twin beams is matched with a gear located inside the display unit creating vertical up and down movement. The rotary moving capacitive sensor located on the gear provides angle data to a data processor located inside the display unit which converts the rotary angle data to linear measurement units to the LCD display. The structure of the height gauges as they exist on the market today are shown in
In summary, the setbacks of the existing electronic twin column height gauges have resulted in higher costs, and lower measurement accuracy.
The Electronic Twin Column Height Gauge of the present invention solves the problems of the height gauges as they exist on the market today and offers advantages over its predecessor by having a less complicated construction compared to the existing twin column electronic height gauges. It offers high accuracy of readings with good repeatability, longer life, simpler assembly and maintenance, thereby leading to overall lower costs.
The present invention utilizes a newly invented electronic twin column height gauge with the following principle parts comprising two single columns (Column 1) and (Column 2), display units with cover and measuring scriber, a fixed capacitance sensor, and a linear moving capacitance sensor. An additional technical improvement for this new electronic height gauge is that the fixed capacitance sensor is placed in a shallow groove on the flat side of Column 1. The linear moving capacitance sensor is installed inside the display unit cover and facing the fixed capacitance sensor in Column 1. The moving capacitance sensor will transfer data to an electronic processor located in the display unit cover with an increased speed and display the reading from the LCD display.
For this new invention, there is a flat surface on Column 1, and a fixed capacitance sensor is installed on this flat surface with the same length of Column 1. On the flat surface of Column 1, a shallow groove is required for the assembling of the fixed capacitance sensor. A toothed rack is applied on the surface of Column 2. A hand wheel is assembled in the back of the display unit connected to a gear inside the display unit. The hand wheel, gear, and toothed rack on Column 2 work in conjunction thereby creating up and downward movements for the display unit.
The principle parts for this new electronic twin column height gauge as shown in
On Column 2, of the new invention a simple rack and gear system is added. The gear is connected to a hand wheel on the back of the display unit, and making up and downward movements. This rack and gear system is only created to aid display unit to make upward and downward movements, and does not affect the accuracy of the height gauge as it does in the height gauges that exist on the market today.
The new electronic twin column height gauge of the present invention has a simpler structure compared to the existing electronic twin column height gauges as they exist on the market. The present invention gives high accuracy of readings and accurate repeatability, a longer lifetime, and easy installation and servicing, all leading to an overall lower cost.
The principal parts for this new height gauge includes a first column “Column 1”, and a second column “Column 2”, a display unit with a cover and measuring scriber, a fixed capacitance sensor and a linear moving capacitance (capacitive) sensor. The fixed capacitance sensor is located on a flat surface of Column 1 with the length equivalent to the length of Column 1. The linear moving capacitance sensor is located inside the display unit cover with its position facing the fixed sensor. The linear moving capacitance sensor and the fixed capacitance sensors face toward each other without any direct physical contact. However, the linear moving capacitance sensor is making direct electrical contact with the fixed capacitance sensor when the height gauge is making upward and downward movements.
Because of the movement between the fixed capacitive sensors and the linear moving capacitance sensors which are facing each other without physical contact, the linear moving capacitive sensor is electronically transferring the measurement as it travels along the fixed capacitive sensor when the height gauge is operating in an upward and downward vertical position. This linear direct data transfer sensor system results in high accuracy of measurements, which also ensures accurate measurement repeatability. Also, since the moving and fixed capacitance sensors are not in physical contact with each other, there is no damage from wear for either part, which will lead to a longer life span.
Because the measuring system is very simple and easy to assemble and service unlike the old fashioned height gauges as they exist on the market today, the new invention offers advantages including higher accuracy, higher reliability and a reduced overall cost.
To reiterate, the fixed capacitance sensor of the present invention is placed in a shallow groove on the flat side of Column 1. The moving capacitance sensor is placed inside the display unit cover and facing the fixed capacitance sensor on Column 1. On Column 2, a simple rack and gear system is added. The gear is connected to a hand wheel on the back of the display unit, and making upward and downward movements.
The present invention has the advantages over the prior art as described above by offering in a newly invented twin column electronic height gauge as described herein. In accordance with a preferred embodiment of the invention, there is disclosed a twin column electronic height gauge with the following principle components and comprising two single columns (Column 1) and (Column 2), display units with cover and measuring scriber, a fixed capacitance sensor, and a linear moving capacitance sensor.
To reiterate, the fixed capacitance sensor is placed in a shallow groove on the flat side of Column 1. The linear moving capacitance sensor is installed inside the display unit cover and facing the fixed capacitance sensor in Column 1. The linear moving capacitance sensor will transfer data to an electronic processor located in the display unit cover and display the reading from the LCD display. For this new invention, there is a flat surface on Column 1, and a fixed capacitance sensor is installed on this flat surface with the same length of Column 1. On the flat surface of Column 1, a shallow groove is required for the assembling of the fixed capacitance sensor. A toothed rack is applied on the surface of Column 2. A hand wheel is assembled in the back of the display unit connected to a gear inside the display unit. The hand wheel, gear, and toothed rack on Column 2 work in conjunction thereby creating up and downward movements for the display unit.
Still other objects, features, and attendant advantages of the present invention will become apparent to those skilled in the art from a reading of the following detailed description of embodiments constructed in accordance therewith, taken in conjunction with the accompanying drawings.
Detailed descriptions of the preferred embodiment are provided herein. It is to be understood, however, that the present invention may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims and as a representative basis for teaching one skilled in the art to employ the present invention in virtually any appropriately detailed system, structure or manner. Referring to the drawing figures, like reference numerals designate identical or corresponding elements throughout the several figures, there is disclosed: (1) Base; (2) Buttons; (3) LCD Display; (4) display unit with cover; (5) Column 1; (6) fixed capacitance sensor; (7) toothed rack; (8) Column 2; (9) measuring scriber; (10) gear; (11) cable; (12) main electronic processor; (13) linear moving capacitance sensor; (14) handwheel.
The above features differ from those that exist on the market today: (15) gear system (existing on market); (16) rotary moving capacitance sensor (existing on market); (17) fixed capacitance sensor (existing on market).
In accordance with a preferred embodiment of the invention, there is disclosed a new electronic twin column height gauge having a simpler structure compared to the existing twin column height gauges as they exist on the market. The present invention enables high accuracy of readings, good repeatability, longer lifetime, and easy installation and servicing, which will lead to an overall lower cost. In comparison to the existing technologies, the uniqueness of this invention is set forth as the following:
The principal parts for this new electronic twin column height gauge includes: Column 1, Column 2, display unit with cover and measuring scriber, a fixed capacitance sensor and a linear moving capacitance sensor. The fixed capacitance sensor is located on a flat surface of the Column 1 with the length equivalent to the length of Column 1. The linear moving capacitance sensor is located inside the display unit cover with its position facing the fixed sensor. The moving and the fixed capacitance sensors do not make direct physical contact however are making a direct electrical contact with the fixed capacitance sensor when the height gauge is making upward and downward movements. This direct electrical contact sensor system results in high accuracy of measurements, which also ensures high measuring repeatability and accuracy. Also, since the moving and fixed capacitance sensor are not in physical contacts with each other, there is no wear damage for either part, which will lead to a longer lifecycle. Because the measuring system is very simple and easy to assemble and service unlike the old fashioned height gauges, it will help to reduce the overall cost.
The fixed capacitance sensor is placed in a shallow groove on the flat side of Column 1. The moving capacitance sensor is placed inside the display unit cover and facing the fixed capacitance sensor on Column 1. On Column 2, a simple rack and gear system is added. The gear is connected to a hand wheel on the back of the display unit, and making upward and downward movements.
Still other objects, features, and attendant advantages of the present invention will become apparent to those skilled in the art from a reading of the above detailed description of embodiments constructed in accordance therewith, taken in conjunction with the accompanying drawings.
While the invention has been described in connection with a preferred embodiment, it is not intended to limit the scope of the invention to the particular form set forth, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
It will be appreciated by those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restricted. The scope of the invention described by the foregoing includes all changes that come within the meaning, range and equivalence thereof and is intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
200420120573.X | Dec 2004 | CN | national |