The present invention relates to a linear polarized planar microstrip radiating antenna element, and more particularly to a circular patch geometry that provides improved antenna element performance.
Planar microstrip antenna elements and arrays are utilized in a variety of applications due to their simple structure, packaging advantages, and ease in fabrication and integration with associated electronic circuitry. However, planar microstrip antennas are inherently limited in input impedance bandwidth, which is a significant disadvantage in variable and wideband frequency applications, and particularly in spread-spectrum applications.
It is known that the input impedance bandwidth of planar microstrip antenna elements and arrays can be improved by aperture feeding the radiating elements. This can be accomplished by constructing the antenna element or array as a set of three vertically aligned metal layers separated by intervening dielectric layers. The center metal layer is used as the ground plane and the two outer metal layers are respectively etched to form a feed structure and one or more radiating patches, with energy being coupled from the feed structure to the radiating patches through corresponding apertures etched in the ground plane layer. It is also known that the bandwidth can be further enhanced, at least in the case of rectangular radiating patches, through the addition of rectangular parasitic metal strips at the non-resonant edges of the radiating patches. The parasitic strips are co-planar with the radiating patches and capacitively load the respective radiating patches to make their electrical impedance more uniform across the range of activation frequency. However, antenna elements incorporating these features are still bandwidth limited and tend to exhibit excessive off-boresight variation in beam directivity. Accordingly, what is needed is a linearly polarized planar microstrip antenna having both improved input impedance bandwidth and off-boresight radiation uniformity.
The present invention is directed to an improved planar microstrip antenna including one or more aperture-fed circular disk patch radiating elements capacitively coupled to respective parasitic strip elements. The circular disk patches are symmetrically disposed above respective ground plane apertures, and the parasitic strip elements are annular sectors that are co-planar and concentric with the circular disk patches, and placed adjacent to the periphery of each patch. This geometry provides further enhancement of the input impedance bandwidth, and significantly reduced off-boresight radiation variability, for beam directivity that is more uniform over both frequency and direction.
The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:—
The present invention is illustrated herein in the context of a radar transceiver 10 designed for radar object detection in a motor vehicle back-up and parking aid. However, it should be understood that the present invention applies to planar microstrip antennas in general, regardless of application.
Referring to
The transmitter antenna 14 is formed on the right-hand side of the circuit board 12 as viewed in
Summarizing, the microstrip antenna geometry of the present invention provides performance advantages compared to prior antenna constructs. It should be understood that various modifications in addition to those mentioned above will occur to those skilled in the art. For example, the number of annular sector strip pairs per host circular patch may be varied (i.e., multiple stagger-tuned annular sector parasitic pairs), the patches may be excited in a different way than shown (i.e., microstrip line fed, proximity coupled, probe-fed, etc.), and so on. Accordingly, it is intended that the invention not be limited to the disclosed embodiment, but that it have the full scope permitted by the language of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4554549 | Fassett et al. | Nov 1985 | A |
4821040 | Johnson et al. | Apr 1989 | A |
5777581 | Lilly et al. | Jul 1998 | A |
5943016 | Snyder et al. | Aug 1999 | A |
5955994 | Staker et al. | Sep 1999 | A |
6061025 | Jackson et al. | May 2000 | A |
6788257 | Fang et al. | Sep 2004 | B1 |