The present invention relates to analysis techniques for digital time-series signals, such as speech signals, acoustic signals, electrocardiograms, brain waves, magnetoencephalograms, and seismic waves.
In encoding of speech signals and acoustic signals, encoding methods based on prediction coefficients obtained by performing linear prediction analysis of an input speech signal or acoustic signal are widely used (refer to non-patent literature 1 and 2, for example).
In non-patent literature 1 to 3, the prediction coefficients are calculated by a linear prediction analysis device exemplified in
The input signal, which is a digital speech signal or a digital acoustic signal in the time domain, is processed in frames of N samples each. The input signal of the current frame, which is the frame to be processed at the present time, is expressed by XO(n) (n=0, 1, . . . , N−1), where n represents the sample number of a sample in the input signal, and N is a predetermined positive integer. The input signal of the frame one frame before the current one is XO(n) (n=−N, −N+1, . . . , −1), and the input signal of the frame one frame after the current one is XO(n) (n=N, N+1, . . . , 2N−1).
The autocorrelation calculation unit 11 of the linear prediction analysis device 1 calculates an autocorrelation RO(i) (i=0, 1, . . . , Pmax) from the input signal XO(n) by expression (11), where Pmax is a predetermined positive integer smaller than N.
The coefficient multiplication unit 12 then multiplies the autocorrelation RO(i) by a predetermined coefficient wO(i) (i=0, 1, . . . , Pmax) of the same i to obtain a modified autocorrelation R′O(i) (i=0, 1, . . . , Pmax). That is, the modified autocorrelation R′O(i) is given by expression (12).
The prediction coefficient calculation unit 13 uses R′O(i) to calculate coefficients that can be transformed to first-order to Pmax-order, which is a predetermined maximum order, linear prediction coefficients by using, for example, the Levinson-Durbin method. The coefficients that can be transformed to linear prediction coefficients include PARCOR coefficients KO(1), KO(2), . . . , KO(Pmax) and linear prediction coefficients aO(1), aO(2), . . . , aO(Pmax).
ITU-T Recommendation G.718 (non-patent literature 1) and ITU-T Recommendation G.729 (non-patent literature 2) use a fixed 60-Hz-bandwidth coefficient, which has been obtained beforehand, as the coefficient wO(i).
More specifically, the coefficient wO(i) is defined by using an exponential function, as given by expression (13). In expression (3), a fixed value of f0=60 Hz is used and fs is a sampling frequency.
Non-patent literature 3 presents an example using a coefficient based on a function other than the exponential function. The function used there is based on a sampling period τ (equivalent to a period corresponding to fs) and a predetermined constant a and likewise uses a fixed-value coefficient.
The conventional linear prediction analysis methods used for encoding speech signals and acoustic signals calculate coefficients that can be transformed to linear prediction coefficients, by using a modified autocorrelation R′O(i) obtained by multiplying an autocorrelation RO(i) by a fixed coefficient wO(i). With an input signal that does not require modification by multiplying the autocorrelation RO(i) by the coefficient wO(i), that is, with an input signal in which a spectral peak does not become too large in the spectral envelope corresponding to coefficients that can be transformed to linear prediction coefficients even if the coefficients that can be transformed to the linear prediction coefficients are calculated by using the autocorrelation RO(i) itself instead of the modified autocorrelation R′O(i), multiplying the autocorrelation RO(i) by the coefficient wO(i) could lower the accuracy of approximation of the spectral envelope of the input signal XO(n) by the spectral envelope corresponding to the coefficients that can be transformed to the linear prediction coefficients, calculated by using the modified autocorrelation R′O(i), meaning that the accuracy of linear prediction analysis could be lowered.
An object of the present invention is to provide a linear prediction analysis method, device, program, and storage medium with a higher analysis accuracy than before.
A linear prediction analysis method according to one aspect of the present invention obtains, in each frame, which is a predetermined time interval, coefficients that can be transformed to linear prediction coefficients corresponding to an input time-series signal. The linear prediction analysis method includes an autocorrelation calculation step of calculating an autocorrelation RO(i) between an input time-series signal XO(n) of a current frame and an input time-series signal XO(n−i) i samples before the input time-series signal XO(n) or an input time-series signal XO(n+i) i samples after the input time-series signal XO(n), for each i of i=0, 1, . . . , Pmax at least; and a prediction coefficient calculation step of calculating coefficients that can be transformed to first-order to Pmax-order linear prediction coefficients, by using a modified autocorrelation R′O(i) obtained by multiplying a coefficient wO(i) by the autocorrelation RO(i) for each i. For each order i of some orders i at least, the coefficient wO(i) corresponding to the order i is in a monotonically increasing relationship with an increase in a period, a quantized value of the period, or a value that is negatively correlated with a fundamental frequency based on the input time-series signal of the current frame or a past frame.
A linear prediction analysis method according to another aspect of the present invention obtains, in each frame, which is a predetermined time interval, coefficients that can be transformed to linear prediction coefficients corresponding to an input time-series signal. The linear prediction analysis method includes an autocorrelation calculation step of calculating an autocorrelation RO(i) between an input time-series signal XO(n) of a current frame and an input time-series signal XO(n−i) i samples before the input time-series signal XO(n) or an input time-series signal XO(n+i) i samples after the input time-series signal XO(n), for each i of i=0, 1, . . . , Pmax at least; a coefficient determination step of obtaining a coefficient wO(i) from a single coefficient table of two or more coefficient tables by using a period, a quantized value of the period, or a value that is negatively correlated with the fundamental frequency based on the input time-series signal of the current frame or a past frame, the two or more coefficient tables each storing orders i of i=0, 1, . . . , Pmax in association with coefficients wO(i) corresponding to the orders i; and a prediction coefficient calculation step of calculating coefficients that can be transformed to first-order to Pmax-order linear prediction coefficients, by using a modified autocorrelation R′O(i) obtained by multiplying the obtained coefficient wO(i) by the autocorrelation RO(i) for each i. A first coefficient table of the two or more coefficient tables is a coefficient table from which the coefficient wO(i) is obtained in the coefficient determination step when the period, the quantized value of the period, or the value that is negatively correlated with the fundamental frequency is a first value; a second coefficient table of the two or more coefficient tables is a coefficient table from which the coefficient wO(i) is obtained in the coefficient determination step when the period, the quantized value of the period, or the value that is negatively correlated with the fundamental frequency is a second value larger than the first value; and for each order i of some orders i at least, the coefficient corresponding to the order i in the second coefficient table is larger than the coefficient corresponding to the order i in the first coefficient table.
A linear prediction analysis method according to another aspect of the present invention obtains, in each frame, which is a predetermined time interval, coefficients that can be transformed to linear prediction coefficients corresponding to an input time-series signal. The linear prediction analysis method includes an autocorrelation calculation step of calculating an autocorrelation RO(i) between an input time-series signal XO(n) of a current frame and an input time-series signal XO(n−i) i samples before the input time-series signal XO(n) or an input time-series signal XO(n+i) i samples after the input time-series signal XO(n), for each i of i=0, 1, . . . , Pmax at least; a coefficient determination step of obtaining a coefficient from a single coefficient table of coefficient tables t0, t1, and t2 by using a period, a quantized value of the period, or a value that is negatively correlated with a fundamental frequency based on the input time-series signal of the current frame or a past frame, the coefficient table t0 storing a coefficient wt0(i), the coefficient table t1 storing a coefficient wt1(i), and the coefficient table t2 storing a coefficient wt2(i); and a prediction coefficient calculation step of obtaining coefficients that can be transformed to first-order to Pmax-order linear prediction coefficients, by using a modified autocorrelation R′O(i) obtained by multiplying the obtained coefficient by the autocorrelation RO(i) for each i. Depending on the period, the quantized value of the period, or the value that is negatively correlated with the fundamental frequency, the period is classified into one of a case where the period is short, a case where the period is intermediate, and a case where the period is long; the coefficient table t0 is a coefficient table from which the coefficient is obtained in the coefficient determination step when the period is short, the coefficient table t1 is a coefficient table from which the coefficient is obtained in the coefficient determination step when the period is intermediate, and the coefficient table t2 is a coefficient table from which the coefficient is obtained in the coefficient determination step when the period is long; and wt0(i)<wt(i)≤wt2(i) is satisfied for at least some orders i, wt0(i)≤wt1(i)≤wt2(i) is satisfied for at least some orders i of the other orders i, and wt0(i)≤wt1(i)≤wt2(i) is satisfied for the remaining orders i.
A linear prediction analysis method according to another aspect of the present invention obtains, in each frame, which is a predetermined time interval, coefficients that can be transformed to linear prediction coefficients corresponding to an input time-series signal. The linear prediction analysis method includes an autocorrelation calculation step of calculating an autocorrelation RO(i) between an input time-series signal XO(n) of a current frame and an input time-series signal XO(n−i) i samples before the input time-series signal XO(n) or an input time-series signal XO(n+i) i samples after the input time-series signal XO(n), for each i of i=0, 1, . . . , Pmax at least; and a prediction coefficient calculation step of calculating coefficients that can be transformed to first-order to Pmax-order linear prediction coefficients, by using a modified autocorrelation R′O(i) obtained by multiplying a coefficient wO(i) by the autocorrelation RO(i) for each i. For each order i of some orders i at least, the coefficient wO(i) corresponding to the order i is in a monotonically decreasing relationship with an increase in a value that is positively correlated with a fundamental frequency based on the input time-series signal of the current or a past frame.
A linear prediction analysis method according to another aspect of the present invention obtains, in each frame, which is a predetermined time interval, coefficients that can be transformed to linear prediction coefficients corresponding to an input time-series signal. The linear prediction analysis method includes an autocorrelation calculation step of calculating an autocorrelation RO(i) between an input time-series signal XO(n) of a current frame and an input time-series signal XO(n−i) i samples before the input time-series signal XO(n) or an input time-series signal XO(n+i) i samples after the input time-series signal XO(n), for each i of i=0, 1, . . . , Pmax at least; a coefficient determination step of obtaining a coefficient wO(i) from a single coefficient table of two or more coefficient tables by using a value that is positively correlated with a fundamental frequency based on the input time-series signal of the current frame or a past frame, the two or more coefficient tables each storing orders i of i=0, 1, . . . , Pmax in association with coefficients wO(i) corresponding to the orders i; and a prediction coefficient calculation step of calculating coefficients that can be transformed to first-order to Pmax-order linear prediction coefficients, by using a modified autocorrelation R′O(i) obtained by multiplying the obtained coefficient wO(i) by the autocorrelation RO(i) for each i. A first coefficient table of the two or more coefficient tables is a coefficient table from which the coefficient wO(i) is obtained in the coefficient determination step when the value that is positively correlated with the fundamental frequency is a first value; a second coefficient table of the two or more coefficient tables is a coefficient table from which the coefficient wO(i) is obtained in the coefficient determination step when the value that is positively correlated with the fundamental frequency is a second value smaller than the first value; and for each order i of some orders i at least, the coefficient corresponding to the order i in the second coefficient table is larger than the coefficient corresponding to the order i in the first coefficient table.
A linear prediction analysis method according to another aspect of the present invention obtains, in each frame, which is a predetermined time interval, coefficients that can be transformed to linear prediction coefficients corresponding to an input time-series signal. The linear prediction analysis method includes an autocorrelation calculation step of calculating an autocorrelation RO(i) between an input time-series signal XO(n) of a current frame and an input time-series signal XO(n−i) i samples before the input time-series signal XO(n) or an input time-series signal XO(n+i) i samples after the input time-series signal XO(n), for each i of i=0, 1, . . . , Pmax at least; a coefficient determination step of obtaining a coefficient from a single coefficient table of coefficient tables t0, t1, and t2 by using a value that is positively correlated with a fundamental frequency based on the input time-series signal of the current frame or a past frame, the coefficient table t0 storing a coefficient wt0(i), the coefficient table t1 storing a coefficient wt1(i), and the coefficient table t2 storing a coefficient wt2(i); and a prediction coefficient calculation step of calculating coefficients that can be transformed to first-order to Pmax-order linear prediction coefficients, by using a modified autocorrelation R′O(i) obtained by multiplying the obtained coefficient by the autocorrelation RO(i) for each i. Depending on the value that is positively correlated with the fundamental frequency, the fundamental frequency is classified into one of a case where the fundamental frequency is high, a case where the fundamental frequency is intermediate, and a case where the fundamental frequency is low; the coefficient table t0 is a coefficient table from which the coefficient is obtained in the coefficient determination step when the fundamental frequency is high, the coefficient table t1 is a coefficient table from which the coefficient is obtained in the coefficient determination step when the fundamental frequency is intermediate, and the coefficient table t2 is a coefficient table from which the coefficient is obtained in the coefficient determination step when the fundamental frequency is low; and wt0(i)<wt(i)≤wt2(i) is satisfied for some orders i at least, wt0(i)≤wt1(i)<wt2(i) is satisfied for some orders i at least of the other orders i, and wt0(i)≤wt1(i)≤wt2(i) is satisfied for the remaining orders i.
By using a coefficient specified in accordance with a value that is positively correlated with the fundamental frequency or a value that is negatively correlated with the fundamental frequency, as a coefficient by which an autocorrelation is multiplied to obtain a modified autocorrelation, linear prediction can be implemented with a higher analysis accuracy than before.
Embodiments of a linear prediction analysis device and method will be described with reference to the drawings.
A linear prediction analysis device 2 according to a first embodiment includes an autocorrelation calculation unit 21, a coefficient determination unit 24, a coefficient multiplication unit 22, and a prediction coefficient calculation unit 23, for example, as shown in
An input signal XO(n) input to the linear prediction analysis device 2 can be a digital speech signal, a digital acoustic signal, or a digital signal such as an electrocardiogram, a brain wave, a magnetoencephalogram, and a seismic wave, in the time domain in each frame, which is a predetermined time interval. The input signal is an input time-series signal. The input signal in the current frame is denoted as XO(n) (n=0, 1, . . . , N−1), where n represents the sample number of a sample in the input signal, and N is a predetermined positive integer. The input signal of the frame one frame before the current one is XO(n) (n=−N, −N+1, . . . , −1), and the input signal of the frame one frame after the current one is XO(n) (n=N, N+1, . . . , 2N−1). A case where the input signal XO(n) is a digital speech signal or a digital acoustic signal will be described below. The input signal XO(n) (n=0, 1, . . . N−1) can be a recorded sound signal itself, a signal whose sampling rate has been converted for analysis, a signal subjected to pre-emphasis processing, or a windowed signal.
The linear prediction analysis device 2 also receives information about the fundamental frequency of the digital speech signal or the digital acoustic signal in each frame. The information about the fundamental frequency is obtained by a periodicity analysis unit 900 outside the linear prediction analysis device 2. The periodicity analysis unit 900 includes a fundamental-frequency calculation unit 930, for example.
The fundamental-frequency calculation unit 930 calculates a fundamental frequency P from all or a part of the input signal XO(n) (n=0, 1, . . . , N−1) of the current frame and/or input signals of frames near the current frame. The fundamental-frequency calculation unit 930 calculates the fundamental frequency P of the digital speech signal or the digital acoustic signal in a signal segment that includes all or a part of the input signal XO(n) (n=0, 1, . . . , N−1) of the current frame, for example, and outputs information with which the fundamental frequency P can be determined, as information about the fundamental frequency. There are a variety of known methods of obtaining the fundamental frequency, and any of those known methods can be used. Alternatively, the obtained fundamental frequency P may be encoded to a fundamental frequency code, and the fundamental frequency code may be output as the information about the fundamental frequency. Further, a quantized value {circumflex over ( )}P of the fundamental frequency corresponding to the fundamental frequency code may be obtained, and the quantized value {circumflex over ( )}P of the fundamental frequency may be output as the information about the fundamental frequency. Specific examples of the fundamental-frequency calculation unit 930 will be described below.
In specific example 1 of the fundamental-frequency calculation unit 930, the input signal XO(n) (n=0, 1, . . . , N−1) of the current frame is constituted of a plurality of subframes, and, for each frame, the fundamental-frequency calculation unit 930 begins its operation earlier than the linear prediction analysis device 2. The fundamental-frequency calculation unit 930 first calculates respective fundamental frequencies Ps1, . . . , PsM of M subframes XOs1(n) (n=0, 1, . . . , N/M−1), . . . , XOsM(n) (n=(M−1)N/M, (M−1)N/M+1, . . . , N−1), where M is an integer not smaller than 2. It is assumed that N is divisible by M. The fundamental-frequency calculation unit 930 outputs information that can determine the maximum value max(Ps1, . . . , PsM) of the fundamental frequencies Ps1, . . . , PsM of the M subframes constituting the current frame, as the information about the fundamental frequency.
In specific example 2 of the fundamental-frequency calculation unit 930, a signal segment that includes a look-ahead portion forms the signal segment for the current frame with the input signal XO(n) (n=0, 1, . . . , N−1) of the current frame and a part of the input signal XO(n) (n=N, N+1, . . . , N+Nn−1) of the next frame, where Nn is a positive integer satisfying Nn<N, and, for each frame, the fundamental-frequency calculation unit 930 begins its operation later than the linear prediction analysis device 2. The fundamental-frequency calculation unit 930 calculates the fundamental frequencies Pnow and Pnext of the input signal XO(n) (n=0, 1, . . . , N−1) of the current frame and a part of the input signal XO(n) (n=N, N+1, . . . , N+Nn−1) of the next frame, respectively, in the signal segment for the current frame and stores the fundamental frequency Pnext in the fundamental-frequency calculation unit 930. As the information about the fundamental frequency, the fundamental-frequency calculation unit 930 outputs information that can determine the fundamental frequency Pnext which has been obtained for the signal segment of the preceding frame and stored in the fundamental-frequency calculation unit 930, which is the fundamental frequency calculated for the part of the input signal XO(n) (n=0, 1, . . . , Nn−1) of the current frame in the signal segment for the preceding frame. The fundamental frequency of each of the plurality of subframes may be obtained for the current frame, as in specific example 1.
In specific example 3 of the fundamental-frequency calculation unit 930, the input signal XO(n) (n=0, 1, . . . , N−1) of the current frame itself forms the signal segment of the current frame, and, for each frame, the fundamental-frequency calculation unit 930 begins its operation later than the linear prediction analysis device 2. The fundamental-frequency calculation unit 930 calculates the fundamental frequency P of the input signal XO(n) (n=0, 1, . . . , N−1) of the current frame, which forms the signal segment for the current frame, and stores the fundamental frequency P in the fundamental-frequency calculation unit 930. As the information about the fundamental frequency, the fundamental-frequency calculation unit 930 outputs information that can determine the fundamental frequency P calculated in the signal segment for the preceding frame, that is, calculated for the input signal XO(n) (n=−N, −N+1, . . . , −1) of the preceding frame, and stored in the fundamental-frequency calculation unit 930.
The operation of the linear prediction analysis device 2 will be described next.
The autocorrelation calculation unit 21 calculates an autocorrelation RO(i) (i=0, 1, . . . , Pmax) from the input signal XO(n) (n=0, 1, . . . , N−1), which is a digital speech signal or a digital audio signal in the time domain in frames of N input samples each (step S1). Pmax is the maximum order of a coefficient that can be transformed to a linear prediction coefficient calculated by the prediction coefficient calculation unit 23 and is a predetermined positive integer not exceeding N. The calculated autocorrelation RO(i) (i=0, 1, . . . , Pmax) is supplied to the coefficient multiplication unit 22.
The autocorrelation calculation unit 21 calculates the autocorrelation RO(i) (i=0, 1, . . . , Pmax) as given by expression (14A), for example, by using the input signal XO(n). That is, the autocorrelation RO(i) between the input time-series signal XO(n) of the current frame and the input time-series signal XO(n−i) i samples before the input time-series signal XO(n) is calculated.
Alternatively, the autocorrelation calculation unit 21 calculates the autocorrelation RO(i) (i=0, 1, . . . , Pmax) as given by expression (14B), by using the input signal XO(n). That is, the autocorrelation RO(i) (i=0, 1, . . . , Pmax) between the input time-series signal XO(n) of the current frame and the input time-series signal XO(n+i) i samples after the input time-series signal XO(n) is calculated.
The autocorrelation calculation unit 21 may also obtain a power spectrum corresponding to the input signal XO(n) and then calculate the autocorrelation RO(i) (i=0, 1, . . . , Pmax) in accordance with the Wiener-Khinchin theorem. In either way, the autocorrelation RO(i) may also be calculated by using parts of the input signals of the preceding, the current, and the next frames, such as the input signal XO(n) (n=−Np, −Np+1, . . . , −1, 0, 1, . . . , N−1, N, . . . , N−1+Nn), where Np and Nn are predetermined positive integers that respectively satisfy relations Np<N and Nn<N. Alternatively, the MDCT series may be used in place of an approximated power spectrum, and the autocorrelation may be obtained from the approximated power spectrum. As described above, some autocorrelation calculation techniques that are known and used in practice can be used here.
The coefficient determination unit 24 determines the coefficient wO(i) (i=0, 1, . . . , Pmax) by using the input information about the fundamental frequency (step S4). The coefficient wO(i) is a coefficient for obtaining the modified autocorrelation R′O(i) by modifying the autocorrelation RO(i). The coefficient wO(i) is also called a lag window wO(i) or a lag window coefficient wO(i) in the field of signal processing. Since the coefficient wO(i) is a positive value, the coefficient wO(i) being larger or smaller than a predetermined value could be expressed by the magnitude of the coefficient wO(i) being larger or smaller than the predetermined value. The magnitude of a lag window wO(i) means the value of the lag window wO(i) itself.
The information about the fundamental frequency input to the coefficient determination unit 24 is information that determines the fundamental frequency obtained from all or a part of the input signal of the current frame and/or the input signals of frames near the current frame. That is, the fundamental frequency used to determine the coefficient wO(i) is the fundamental frequency obtained from all or a part of the input signal of the current frame and/or the input signals of frames near the current frame.
The coefficient determination unit 24 determines, as coefficients wO(0), wO(1), . . . , wO(Pmax) for all or some of the orders from zero to Pmax, values that decrease with an increase in the fundamental frequency corresponding to the information about the fundamental frequency in all or a part of the possible range of the fundamental frequency corresponding to the information about the fundamental frequency. As the coefficients wO(0), wO(1), . . . , wO(Pmax), the coefficient determination unit 24 may also determine values that decrease with an increase in the fundamental frequency by using a value that is positively correlated with the fundamental frequency in place of the fundamental frequency.
The coefficient wO(i) (i=0, 1, . . . , Pmax) is determined to include the magnitude of the coefficient wO(i) corresponding to the order i being in a monotonically decreasing relationship with an increase in a value that is positively correlated with the fundamental frequency in the signal segment that includes all or a part of the input signal XO(n) of the current frame, for at least some of the prediction orders i. In other words, the magnitude of the coefficient wO(i) for some orders i may not decrease monotonically with an increase in a value that is positively correlated with the fundamental frequency, as described later.
The possible range of the value that is positively correlated with the fundamental frequency may have a range in which the magnitude of the coefficient wO(i) is constant regardless of an increase in the value that is positively correlated with the fundamental frequency, but in the remaining range, the magnitude of the coefficient wO(i) should decrease monotonically with an increase in the value that is positively correlated with the fundamental frequency.
The coefficient determination unit 24 determines the coefficient wO(i) by using a monotonically non-increasing function of the fundamental frequency corresponding to the input information about the fundamental frequency, for example. The coefficient wO(i) is determined as given by expression (1) below, for example. In the following expression, P is the fundamental frequency corresponding to the input information about the fundamental frequency.
Alternatively, the coefficient wO(i) is determined by expression (2) given below, which uses a predetermined value a larger than 0. When the coefficient wO(i) is considered as a lag window, the value a is used to adjust the width of the lag window, in other words, the strength of the lag window. The predetermined value a should be determined by encoding and decoding the speech signal or the acoustic signal with an encoder that includes the linear prediction analysis device 2 and a decoder corresponding to the encoder, for a plurality of candidate α values, and selecting such candidate a value that gives suitable subjective quality or objective quality of the decoded speech signal or decoded acoustic signal.
Alternatively, the coefficient wO(i) may be determined as given by expression (2A) below, which uses a predetermined function f(P) for the fundamental frequency P. The function f(P) expresses a positive correlation with the fundamental frequency P and a monotonically non-decreasing relationship with the fundamental frequency P, such as f(P)=αP+β (α is a positive value, and β is a predetermined value) and f(P)=αP2+βP+γ (α is a positive value, and β and γ are predetermined values).
The expression which uses the fundamental frequency P to determine the coefficient wO(i) is not limited to expressions (1), (2), and (2A) given above and can be a different expression that can describe a monotonically non-increasing relationship with respect to an increase in a value that is positively correlated with the fundamental frequency. For example, the coefficient wO(i) can be determined by any of expressions (3) to (6) given below, where a is a real number dependent on the fundamental frequency, and m is a natural number dependent on the fundamental frequency. For example, a represents a value that is negatively correlated with the fundamental frequency, and m represents a value that is negatively correlated with the fundamental frequency. i is a sampling period.
Expression (3) is a window function of a type called a Bartlett window, expression (4) is a window function of a type called a Binomial window, expression (5) is a window function of a type called a Triangular in frequency domain window, and expression (6) is a window function of a type called a Rectangular in frequency domain window.
The coefficient wO(i) for not every i but at least some orders i satisfying 0≤i≤Pmax may decrease monotonically with an increase in a value that is positively correlated with the fundamental frequency. In other words, the magnitude of the coefficient wO(i) for some orders i may not decrease monotonically with an increase in a value that is positively correlated with the fundamental frequency.
For example, when i=0, the value of the coefficient wO(0) can be determined by using any of expressions (1) to (6) given above or can be an empirically obtained fixed value that does not depend on a value that is positively correlated with the fundamental frequency, such as wO(0)=1.0001 or wO(0)=1.003 used in ITU-T G.718 and the like. That is, the coefficient wO(i) for each i satisfying 0≤i≤Pmax has a value that decreases with an increase in a value that is positively correlated with the fundamental frequency, but the coefficient for i=0 can be a fixed value.
The coefficient multiplication unit 22 obtains a modified autocorrelation R′O(i) (i=0, 1, . . . , Pmax) by multiplying the coefficient wO(i) (i=0, 1, . . . , Pmax) determined by the coefficient determination unit 24 by the autocorrelation RO(i) (i=0, 1, . . . , Pmax), for the same i, obtained by the autocorrelation calculation unit 21 (step S2). That is, the coefficient multiplication unit 22 calculates the autocorrelation R′O(i) as given by expression (15) below. The calculated autocorrelation R′O(i) is supplied to the prediction coefficient calculation unit 23.
The prediction coefficient calculation unit 23 calculates coefficients that can be transformed to linear prediction coefficients, by using the modified autocorrelation R′O(i) (step S3).
For example, the prediction coefficient calculation unit 23 calculates first-order to Pmax-order, which is a predetermined maximum order, PARCOR coefficients KO(1), KO(2), . . . , KO(Pmax) or linear prediction coefficients aO(1), aO(2), . . . , aO(Pmax), by using the modified autocorrelation R′O(i) and the Levinson-Durbin method.
According to the linear prediction analysis device 2 in the first embodiment, by calculating coefficients that can be transformed to linear prediction coefficients by using a modified autocorrelation obtained by multiplying an autocorrelation by a coefficient wO(i) that includes such a coefficient wO(i) for each order i of at least some prediction orders i that the magnitude monotonically decreases with an increase in a value that is positively correlated with the fundamental frequency in the signal segment that includes all or a part of the input signal XO(n) of the current frame, the coefficients that can be transformed to the linear prediction coefficients suppress the generation of a spectral peak caused by a pitch component even when the fundamental frequency of the input signal is high, and the coefficients that can be transformed to the linear prediction coefficients can represent a spectral envelope even when the fundamental frequency of the input signal is low, thereby making it possible to implement linear prediction with a higher analysis accuracy than before. Therefore, the quality of a decoded speech signal or a decoded acoustic signal obtained by encoding and decoding the input speech signal or the input acoustic signal with an encoder that includes the linear prediction analysis device 2 according to the first embodiment and a decoder corresponding to the encoder is better than the quality of a decoded speech signal or a decoded acoustic signal obtained by encoding and decoding the input speech signal or the input acoustic signal with an encoder that includes a conventional linear prediction analysis device and a decoder corresponding to the encoder.
In a modification of the first embodiment, the coefficient determination unit 24 determines the coefficient wO(i) on the basis of a value that is negatively correlated with the fundamental frequency, instead of a value that is positively correlated with the fundamental frequency. The value that is negatively correlated with the fundamental frequency is, for example, a period, an estimated value of the period, or a quantized value of the period. Given that the period is T, the fundamental frequency is P, and the sampling frequency is fs, T=fs/P, so that the period is negatively correlated with the fundamental frequency. An example of determining the coefficient wO(i) on the basis of a value that is negatively correlated with the fundamental frequency will be described as a modification of the first embodiment.
The functional configuration of the linear prediction analysis device 2 in the modification of the first embodiment and the flowchart of the linear prediction analysis method of the linear prediction analysis device 2 are the same as those in the first embodiment, which are shown in
The period calculation unit 940 calculates the period T from all or a part of the input signal XO of the current frame and/or the input signals of frames near the current frame. The period calculation unit 940 calculates the period T of the digital speech signal or the digital acoustic signal in the signal segment that includes all or a part of the input signal XO(n) of the current frame, for example, and outputs information that can determine the period T, as the information about the period. There are a variety of known methods of obtaining the period, and any of those known methods can be used. A period code may be obtained by encoding the calculated period T, and the period code may be output as the information about the period. A quantized value {circumflex over ( )}T of the period corresponding to the period code may also be obtained, and the quantized value {circumflex over ( )}T of the period may be output as the information about the period. Specific examples of the period calculation unit 940 will be described next.
In specific example 1 of the period calculation unit 940, the input signal XO(n) (n=0, 1, . . . , N−1) of the current frame is constituted of a plurality of subframes, and, for each frame, the period calculation unit 940 begins its operation earlier than the linear prediction analysis device 2. The period calculation unit 940 first calculates respective periods Ts1, . . . , TsM of M subframes XOs1(n) (n=0, 1, . . . , N/M−1), . . . , XOsM(n) (n=(M−1)N/M, (M−1)N/M+1, . . . , N−1), where M is an integer not smaller than 2. It is assumed that N is divisible by M. The period calculation unit 940 outputs information that can determine the minimum value min(Ts1, . . . , TsM) of the periods Ts1, . . . , TsM of the M subframes constituting the current frame, as the information about the period.
In specific example 2 of the period calculation unit 940, with the input signal XO(n) (n=0, 1, . . . , N−1) of the current frame and a part of the input signal XO(n) (n=N, N+1, . . . , N+Nn−1) of the next frame (Nn is a predetermined positive integer which satisfies the relationship Nn<N), the signal segment including the look-ahead portion is configured as the signal segment of the current frame, and, for each frame, the period calculation unit 940 begins its operation later than the linear prediction analysis device 2. The period calculation unit 940 calculates the periods Tnow and Tnex of the input signal XO(n) (n=0, 1, . . . , N−1) of the current frame and a part of the input signal XO(n) (n=N, N+1, . . . , N+Nn−1) of the next frame, respectively, in the signal segment of the current frame and stores the period Tnex in the period calculation unit 940. As the information about the period, the period calculation unit 940 outputs information that can determine the period Tnex which has been obtained in the signal segment of the preceding frame and stored in the period calculation unit 940, that is, the period obtained for the part of the input signal XO(n) (n=0, 1, . . . , Nn−1) of the current frame in the signal segment of the preceding frame. The period of each subframe in a plurality of subframes of the current frame may be obtained as in specific example 1.
In specific example 3 of the period calculation unit 940, the input signal XO(n) (n=0, 1, . . . , N−1) of the current frame itself forms the signal segment of the current frame, and, for each frame, the period calculation unit 940 begins its operation later than the linear prediction analysis device 2. The period calculation unit 940 calculates the period T of the input signal XO(n) (n=0, 1, . . . , N−1) of the current frame, which forms the signal segment of the current frame, and stores the period T in the period calculation unit 940. As the information about the period, the period calculation unit 940 outputs information that can determine the period T which has been calculated in the signal segment of the preceding frame, that is, calculated for the input signal XO(n) (n=−N, −N+1, . . . , −1) of the preceding frame, and stored in the period calculation unit 940.
Processing in the coefficient determination unit 24, by which the operation of the linear prediction analysis device 2 in the modification of the first embodiment differs from the linear prediction analysis device 2 in the first embodiment, will be described next.
The coefficient determination unit 24 of the linear prediction analysis device 2 in the modification of the first embodiment determines the coefficient wO(i) (i=0, 1, . . . , Pmax) by using the input information about the period (step S4).
The information about the period input to the coefficient determination unit 24 is information that determines the period calculated from all or a part of the input signal of the current frame and/or the input signals of frames near the current frame. That is, the period that is used to determine the coefficient wO(i) is the period calculated from all or a part of the input signal of the current frame and/or the input signals of frames near the current frame.
The coefficient determination unit 24 determines, as coefficients wO(0), wO(1), . . . , wO(Pmax) for all or some of the orders from 0 to Pmax, values that increase with an increase in the period corresponding to the information about the period in all or a part of the possible range of the period corresponding to the information about the period. The coefficient determination unit 24 may also determine values that increase with an increase in the period, as the coefficients wO(0), wO(1), . . . , wO(Pmax) by using a value that is positively correlated with the period, instead of the period itself.
The coefficient wO(i) (i=0, 1, . . . , Pmax) is determined to include the magnitude of the coefficient wO(i) corresponding to the order i being in a monotonically increasing relationship with an increase in a value that is negatively correlated with the fundamental frequency in the signal segment that includes all or a part of the input signal XO(n) of the current frame, for at least some of the prediction orders i.
In other words, the magnitude of the coefficient wO(i), for some orders i, may not increase monotonically with an increase in a value that is negatively correlated with the fundamental frequency.
The possible range of the value that is negatively correlated with the fundamental frequency may have a range in which the magnitude of the coefficient wO(i) is constant regardless of an increase in the value that is negatively correlated with the fundamental frequency, but in the remaining range, the magnitude of the coefficient wO(i) should increase monotonically with an increase in the value that is negatively correlated with the fundamental frequency.
The coefficient determination unit 24 determines the coefficient wO(i) by using a monotonically non-decreasing function of the period corresponding to the input information about the period, for example. The coefficient wO(i) is determined as given by expression (7) below, for example. In the following expression, T is the period corresponding to the input information about the period.
Alternatively, the coefficient wO(i) is determined as given by expression (8) below, which uses a predetermined value a larger than 0. When the coefficient wO(i) is considered as a lag window, the value a is used to adjust the width of the lag window, in other words, the strength of the lag window. The predetermined value a should be determined by encoding and decoding the speech signal or the acoustic signal with an encoder that includes the linear prediction analysis device 2 and a decoder corresponding to the encoder, for a plurality of candidate α values, and selecting such candidate α value that gives suitable subjective quality or objective quality of the decoded speech signal or the decoded acoustic signal.
Alternatively, the coefficient wO(i) is determined as given by expression (8A) below, which uses a predetermined function f(T) for the period T. The function f(T) expresses a positive correlation with the period T and a monotonically non-decreasing relationship with the period T, such as f(T)=αT+β (α is a positive value, and β is a predetermined value) and f(T)=αT2+βT+γ (α is a positive value, and β and γ are predetermined values).
The expression that uses the period T to determine the coefficient wO(i) is not limited to expressions (7), (8), and (8A) given above and may be a different expression that can describe a monotonically non-decreasing relationship with an increase in a value that is negatively correlated with the fundamental frequency.
The coefficient wO(i) may increase monotonically with an increase in a value that is negatively correlated with the fundamental frequency, not for every i satisfying 0≤i≤Pmax but at least for some orders i. In other words, the magnitude of the coefficient wO(i) for some orders i may not increase monotonically with an increase in a value that is negatively correlated with the fundamental frequency.
For example, when i=0, the value of the coefficient wO(0) may be determined by using expression (7), (8), or (8A) given above or may be an empirically obtained fixed value that does not depend on a value that is negatively correlated with the fundamental frequency, such as wO(0)=1.0001 or wO(0)=1.003 used in ITU-T G.718 and the like. That is, the coefficient wO(i) for each i satisfying 0≤i≤Pmax has a value that increases with an increase in a value that is negatively correlated with the fundamental frequency, but the coefficient for i=0 may be a fixed value.
According to the linear prediction analysis device 2 in the modification of the first embodiment, by calculating coefficients that can be transformed to linear prediction coefficients, by using a modified autocorrelation obtained by multiplying an autocorrelation by a coefficient wO(i) that includes such a coefficient wO(i) for order i of at least some prediction orders i that the magnitude is monotonically increases with an increase in a value that is negatively correlated with the fundamental frequency in the signal segment that includes all or a part of the input signal XO(n) of the current frame, the coefficients that can be transformed to the linear prediction coefficients suppress the generation of a spectral peak caused by a pitch component even when the fundamental frequency of the input signal is high, and the coefficients that can be transformed to the linear prediction coefficients can represent a spectral envelope even when the fundamental frequency of the input signal is low, thereby making it possible to implement linear prediction with a higher analysis accuracy than before. Therefore, the quality of a decoded speech signal or a decoded acoustic signal obtained by encoding and decoding the input speech signal or the input acoustic signal with an encoder that includes the linear prediction analysis device 2 in the modification of the first embodiment and a decoder corresponding to the encoder is better than the quality of a decoded speech signal or a decoded acoustic signal obtained by encoding and decoding the input speech signal or the input acoustic signal with an encoder that includes a conventional linear prediction analysis device and a decoder corresponding to the encoder.
In a second embodiment, a value that is positively correlated with the fundamental frequency or a value that is negatively correlated with the fundamental frequency is compared with a predetermined threshold, and the coefficient wO(i) is determined in accordance with the result of the comparison. The second embodiment differs from the first embodiment only in the method of determining the coefficient wO(i) in the coefficient determination unit 24, and is the same as the first embodiment in the other respects. The difference from the first embodiment will be described mainly, and a description of the same parts as in the first embodiment will be omitted.
A case in which a value that is positively correlated with the fundamental frequency is compared with a predetermined threshold and the coefficient wO(i) is determined in accordance with the result of the comparison will be described below. A case in which a value that is negatively correlated with the fundamental frequency is compared with a predetermined threshold and the coefficient wO(i) is determined in accordance with the result of the comparison will be described in a first modification of the second embodiment.
The functional configuration of the linear prediction analysis device 2 in the second embodiment and the flowchart of the linear prediction analysis method by the linear prediction analysis device 2 are the same as those in the first embodiment, shown in
An example flow of processing in the coefficient determination unit 24 in the second embodiment is shown in
The coefficient determination unit 24 compares a value that is positively correlated with the fundamental frequency corresponding to the input information about the fundamental frequency, with a predetermined threshold (step S41A). The value that is positively correlated with the fundamental frequency corresponding to the input information about the fundamental frequency is, for example, the fundamental frequency itself corresponding to the input information about the fundamental frequency.
When the value that is positively correlated with the fundamental frequency is equal to or larger than the predetermined threshold, that is, when the fundamental frequency is judged to be high, the coefficient determination unit 24 determines the coefficient wh(i) in accordance with a predetermined rule and sets the determined coefficient wh(i) (i=0, 1, . . . , Pmax) as wO(i) (i=0, 1, . . . , Pmax) (step S42), that is, wO(i)=wh(i).
When the value that is positively correlated with the fundamental frequency is smaller than the predetermined threshold, that is, when the fundamental frequency is judged to be low, the coefficient determination unit 24 determines the coefficient wl(i) in accordance with a predetermined rule and sets the determined coefficient wl(i) (i=0, 1, . . . , Pmax) as wO(i) (i=0, 1, . . . , Pmax) (step S43), that is, wO(i)=wl(i).
Here, wh(i) and wl(i) are determined to satisfy the relationship wh(i)<wl(i) for some orders i at least. Alternatively, wh(i) and wl(i) are determined to satisfy the relationship wh(i)<wl(i) for some orders i at least and to satisfy the relationship wh(i)≤wl(i) for the other orders i. Some orders i at least here mean orders i other than 0 (that is, 1≤i≤Pmax). For example, wh(i) and wl(i) are determined in accordance with such a predetermined rule that wO(i) for the case where the fundamental frequency P is P1 in expression (1) is obtained as wh(i), and wO(i) for the case where the fundamental frequency P is P2 (P1>P2) in expression (1) is obtained as wl(i). Alternatively, for example, wh(i) and wl(i) are determined in accordance with such a predetermined rule that wO(i) for the case where α is α1 in expression (2) is obtained as wh(i), and wO(i) for the case where α is α2 (α1>α2) in expression (2) is obtained as wl(i). In that case, like a in expression (2), α1 and α2 are both determined beforehand. wh(i) and wl(i) obtained beforehand in accordance with either of the above rules may be stored in a table, and either wh(i) or wl(i) may be selected from the table, depending on whether the value that is positively correlated with the fundamental frequency is not smaller than a predetermined threshold. wh(i) and wl(i) are determined in such a manner that the values of wh(i) and wl(i) decrease as i increases. Here, wh(0) and wl(0) for i=0 are not required to satisfy the relationship wh(0)≤wl(0), and values satisfying the relationship wh(0)>wl(0) may be used.
Also in the second embodiment, as in the first embodiment, coefficients that can be transformed to linear prediction coefficients that suppress the generation of a spectral peak caused by a pitch component can be obtained even when the fundamental frequency of the input signal is high, and coefficients that can be transformed to linear prediction coefficients that can express a spectral envelope can be obtained even when the fundamental frequency of the input signal is low, thereby making it possible to implement linear prediction with a higher analysis accuracy than before.
In a first modification of the second embodiment, a predetermined threshold is compared not with a value that is positively correlated with the fundamental frequency but with a value that is negatively correlated with the fundamental frequency, and the coefficient wO(i) is determined in accordance with the result of the comparison. The predetermined threshold in the first modification of the second embodiment differs from the predetermined threshold compared with a value that is positively correlated with the fundamental frequency in the second embodiment.
The functional configuration and flowchart of the linear prediction analysis device 2 in the first modification of the second embodiment are the same as those in the modification of the first embodiment, as shown in
An example flow of processing in the coefficient determination unit 24 in the first modification of the second embodiment is shown in
The coefficient determination unit 24 compares a value that is negatively correlated with the fundamental frequency corresponding to the input information about the period, with a predetermined threshold (step S41B). The value that is negatively correlated with the fundamental frequency corresponding to the input information about the period is, for example, the period corresponding to the input information about the period.
When the value that is negatively correlated with the fundamental frequency is equal to or smaller than the predetermined threshold, that is, when the period is Judged to be short, the coefficient determination unit 24 determines the coefficient wh(i) (i=0, 1, . . . , Pmax) in accordance with a predetermined rule and sets the determined coefficient wh(i) (i=0, 1, . . . , Pmax) as wO(i) (i=0, 1, . . . , Pmax) (step S42), that is, wO(i)=wh(i).
When the value that is negatively correlated with the fundamental frequency is larger than the predetermined threshold, that is, when the period is judged to be long, the coefficient determination unit 24 determines the coefficient wl(i) (i=0, 1, . . . , Pmax) in accordance with a predetermined rule and sets the determined coefficient wl(i) as wO(i) (step S43), that is, wO(i)=wl(i).
Here, wh(i) and wl(i) are determined to satisfy the relationship wh(i)<wl(i) for some orders i at least. Alternatively, wh(i) and wl(i) are determined to satisfy the relationship wh(i)<wl(i) for some orders i at least and to satisfy the relationship wh(i)≤wl(i) for the other orders i. Some orders i at least here mean orders i other than 0 (that is, 1≤i≤Pmax). For example, wh(i) and wl(i) are determined in accordance with such a predetermined rule that wO(i) for the case where the period T is T1 in expression (7) is obtained as wh(i), and wO(i) for the case where the period T is T2 (T1<T2) in expression (7) is obtained as wl(i). Alternatively, for example, wh(i) and wl(i) are determined in accordance with such a predetermined rule that wO(i) for the case where α is α1 in expression (8) is obtained as wh(i), and wO(i) for the case where α is α2 (α1<α2) in expression (8) is obtained as wl(i). In that case, like a in expression (8), α1 and α2 are both determined beforehand. wh(i) and wl(i) obtained beforehand in accordance with either of the above rules may be stored in a table, and either wh(i) or wl(i) may be selected from the table, depending on whether the value that is negatively correlated with the fundamental frequency is not larger than a predetermined threshold. wh(i) and wl(i) are determined in such a manner that the values of wh(i) and wl(i) decrease as i increases. Here, wh(0) and wl(0) for i=0 are not required to satisfy the relationship wh(0)≤wl(0), and values satisfying the relationship wh(0)>wl(0) may be used.
Also in the first modification of the second embodiment, as in the modification of the first embodiment, coefficients that can be transformed to linear prediction coefficients that suppress the generation of a spectral peak caused by a pitch component can be obtained even when the fundamental frequency of the input signal is high, and coefficients that can be transformed to linear prediction coefficients that can express a spectral envelope can be obtained even when the fundamental frequency of the input signal is low, thereby making it possible to implement linear prediction with a higher analysis accuracy than before.
A single threshold is used to determine the coefficient wO(i) in the second embodiment. Two or more thresholds are used to determine the coefficient wO(i) in a second modification of the second embodiment. A method of determining the coefficient by using two thresholds th1′ and th2′ will be described next. The thresholds th1′ and th2′ satisfy the relationship 0<th1′<th2′.
The functional configuration of the linear prediction analysis device 2 in the second modification of the second embodiment is the same as that in the second embodiment, shown in
The coefficient determination unit 24 compares a value that is positively correlated with the fundamental frequency corresponding to the input information about the fundamental frequency, with the thresholds th1′ and th2′. The value that is positively correlated with the fundamental frequency corresponding to the input information about the fundamental frequency is, for example, the fundamental frequency itself corresponding to the input information about the fundamental frequency.
When the value that is positively correlated with the fundamental frequency is larger than the threshold th2′, that is, when the fundamental frequency is judged to be high, the coefficient determination unit 24 determines the coefficient wh(i) (i=0, 1, . . . , Pmax) in accordance with a predetermined rule and sets the determined coefficient wh(i) (i=0, 1, . . . , Pmax) as wO(i) (i=0, 1, . . . , Pmax), that is, wO(i)=wh(1).
When the value that is positively correlated with the fundamental frequency is larger than the threshold th1′ and is equal to or smaller than the threshold th2′, that is, when the fundamental frequency is judged to be intermediate, the coefficient determination unit 24 determines the coefficient wm(i) (i=0, 1, . . . , Pmax) in accordance with a predetermined rule and sets the determined coefficient wm(i) (i=0, 1, . . . , Pmax) as wO(i) (i=0, 1, . . . , Pmax), that is, wO(i)=wm(i).
When the value that is positively correlated with the fundamental frequency is equal to or smaller than the threshold th1′, that is, when the fundamental frequency is judged to be low, the coefficient determination unit 24 determines the coefficient wl(i) (i=0, 1, . . . , Pmax) in accordance with a predetermined rule and sets the determined coefficient wl(i) (i=0, 1, . . . , Pmax) as wO(i) (i=0, 1, . . . , Pmax), that is, wO(i)=wl(i).
Here, wh(i), wm(i), and wl(i) are determined to satisfy the relationship wh(i)<wm(i)<wl(i) for some orders i at least. Some orders i at least here mean orders i other than 0 (that is, 1≤i≤Pmax), for example. Alternatively, wh(i), wm(i), and wl(i) are determined to satisfy the relationship wh(i)<wm(i)≤wl(i) for some orders i at least, the relationship wh(i)≤wm(i)<wl(i) for some orders i of the other orders i, and the relationship wh(i)≤wm(i)≤wl(i) for some orders i of the remaining orders i. For example, wh(i), wm(i), and wl(i) are determined in accordance with such a predetermined rule that wO(i) for the case where the fundamental frequency P is P1 in expression (1) is obtained as wh(i), wO(i) for the case where the fundamental frequency P is P2 (P1>P2) in expression (1) is obtained as wm(i), and wO(i) for the case where the fundamental frequency P is P3 (P2>P3) in expression (1) is obtained as wl(i). Alternatively, for example, wh(i), wm(i), and wl(i) are determined in accordance with such a predetermined rule that wO(i) for the case where α is α1 in expression (2) is obtained as wh(i), wO(i) for the case where α is α2 (α1>α2) in expression (2) is obtained as wm(i), and wO(i) for the case where α is α3 (α2>α3) in expression (2) is obtained as wl(i). In that case, like a in expression (2), α1, α2, and α3 are determined beforehand. wh(i), wm(i), and wl(i) obtained beforehand in accordance with either of the above rules may be stored in a table, and one of wh(i), wm(i), and wl(i) may be selected from the table, depending on the result of comparison between the value that is positively correlated with the fundamental frequency and a predetermined threshold. The intermediate coefficient wm(i) may also be determined by using wh(i) and wl(i). That is, wm(i) may be determined by wM(i)=β′×wh(i)+(1−β′)×wl(i). Here, β′ satisfies 0≤β′≤1, and is obtained from the fundamental frequency P by a function β′=c(P) in which the value of β′ decreases with a decrease in the fundamental frequency P, and the value of β′ increases with an increase in the fundamental frequency P. When wm(i) is obtained in this manner, if the coefficient determination unit 24 stores just two tables, one for storing wh(i) (i=0, 1, . . . , Pmax) and the other for storing wl(i) (i=0, 1, . . . , Pmax), a coefficient close to wh(i) can be obtained when the fundamental frequency is high in the midrange of the fundamental frequency, and a coefficient close to wl(i) can be obtained when the fundamental frequency is low in the midrange of the fundamental frequency. wh(i), wm(i), and wl(i) are determined in such a manner that the values of wh(i), wm(i), and wl(i) decrease as i increases. The coefficients wh(0), wm(0), and wl(0) for i=0 are not required to satisfy the relationship wh(0)≤wm(0)≤wl(0), and values satisfying the relationship wh(0)>wm(0) and/or wm(0)>wl(0) may be used.
Also in the second modification of the second embodiment, as in the second embodiment, coefficients that can be transformed to linear prediction coefficients that suppress the generation of a spectral peak caused by a pitch component can be obtained even when the fundamental frequency of the input signal is high, and coefficients that can be transformed to linear prediction coefficients that can express a spectral envelope can be obtained even when the fundamental frequency of the input signal is low, thereby making it possible to implement linear prediction with a higher analysis accuracy than before.
A single threshold is used to determine the coefficient wO(i) in the first modification of the second embodiment. Two or more thresholds are used to determine the coefficient wO(i) in a third modification of the second embodiment. A method of determining the coefficient by using two thresholds th1 and th2 will be described next with examples. The thresholds th1 and th2 satisfy the relationship 0<th1<th2.
The functional configuration of the linear prediction analysis device 2 in the third modification of the second embodiment is the same as that in the first modification of the second embodiment, shown in
The coefficient determination unit 24 compares a value that is negatively correlated with the fundamental frequency corresponding to the input information about the period, with the thresholds th1 and th2. The value that is negatively correlated with the fundamental frequency corresponding to the input information about the period is, for example, the period corresponding to the input information about the period.
When the value that is negatively correlated with the fundamental frequency is smaller than the threshold th1, that is, when the period is Judged to be short, the coefficient determination unit 24 determines the coefficient wh(i) (i=0, 1, . . . , Pmax) in accordance with a predetermined rule and sets the determined coefficient wh(i) (i=0, 1, . . . , Pmax) as wO(i) (i=0, 1, . . . , Pmax), that is, wO(i)=wh(i).
When the value that is negatively correlated with the fundamental frequency is equal to or larger than the threshold th1 and is smaller than the threshold th2, that is, when the period is judged to be intermediate, the coefficient determination unit 24 determines the coefficient wm(i) (i=0, 1, . . . , Pmax) in accordance with a predetermined rule and sets the determined coefficient wm(i) (i=0, 1, . . . , Pmax) as wO(i) (i=0, 1, . . . , Pmax), that is, wO(i)=wm(i).
When the value that is negatively correlated with the fundamental frequency is equal to or larger than the threshold th2, that is, when the period is judged to be long, the coefficient determination unit 24 determines the coefficient wl(i) in accordance with a predetermined rule and sets the determined coefficient wl(i) (i=0, 1, . . . , Pmax) as wO(i) (i=0, 1, . . . , Pmax), that is, wO(i)=wl(i).
Here, wh(i), wm(i), and wl(i) are determined to satisfy the relationship wh(i)<wm(i)<wl(i) for some orders i at least. Some orders i at least here mean orders i other than 0 (that is, 1≤i≤Pmax), for example. Alternatively, wh(i), wm(i), and wl(i) are determined to satisfy the relationship wh(i)<wm(i)≤wl(i) for some orders i at least, the relationship wh(i)≤wm(i)<wl(i) for some orders i of the other orders i, and the relationship wh(i)≤wm(i)≤wl(i) for the remaining orders i. For example, wh(i), wm(i), and wl(i) are determined in accordance with such a predetermined rule that wO(i) for the case where the period T is T1 in expression (7) is obtained as wh(i), wO(i) for the case where the period T is T2 (T1<T2) in expression (7) is obtained as wM(i), and wO(i) for the case where the period T is T3 (T2<T3) in expression (7) is obtained as wl(i). Alternatively, for example, wh(i), wm(i), and wl(i) are determined in accordance with such a predetermined rule that wO(i) for the case where α is α1 in expression (8) is obtained as wh(i), wO(i) for the case where α is α2 (α1<α2) in expression (8) is obtained as wm(i), and wO(i) for the case where α is α3 (α2<α3) in expression (2) is obtained as wl(i). In that case, like a in expression (8), α1, α2, and α3 are determined beforehand. wh(i), wm(i), and wl(i) obtained beforehand in accordance with either of the above rules may be stored in a table, and wh(i), wm(i), or wl(i) may be selected from the table, depending on the result of comparison between the value that is negatively correlated with the fundamental frequency and a predetermined threshold. The intermediate coefficient wm(i) may also be determined by using wh(i) and wl(i). That is, wm(i) may be determined by wm(i)=(1−f)×wh(i)+β×wl(i). Here, R satisfies 0≤β≤1, and is obtained from the period T by a function β=b(T) in which the value of R decreases with a decrease in the period T, and the value of R increases with an increase in the period T. When wm(i) is obtained in this manner, if the coefficient determination unit 24 stores just two tables, one for storing wh(i) (i=0, 1, . . . , Pmax) and the other for storing wl(i) (i=0, 1, . . . , Pmax), a coefficient close to wh(i) can be obtained when the period is short in the midrange of the period, and a coefficient close to wl(i) can be obtained when the period is long in the midrange of the period. wh(i), wm(i), and wl(i) are determined in such a manner that the values of wh(i), wm(i), and wl(i) decrease as i increases. The coefficients wh(0), wm(0), and wl(0) for i=0 are not required to satisfy the relationship wh(0)≤wm(0) wl(0), and values satisfying the relationship wh(0)>wm(0) and/or wm(0)>wl(0) may be used.
Also in the third modification of the second embodiment, as in the first modification of the second embodiment, coefficients that can be transformed to linear prediction coefficients that suppress the generation of a spectral peak caused by a pitch component can be obtained even when the fundamental frequency of the input signal is high and coefficients that can be transformed to linear prediction coefficients that can express a spectral envelope can be obtained even when the fundamental frequency of the input signal is low, thereby making it possible to implement linear prediction with a higher analysis accuracy than before.
In a third embodiment, the coefficient wO(i) is determined by using a plurality of coefficient tables. The third embodiment differs from the first embodiment just in the method of determining the coefficient wO(i) in the coefficient determination unit 24 and is the same as the first embodiment in the other respects. The difference from the first embodiment will be described mainly, and a description of the same parts as in the first embodiment will be omitted.
The linear prediction analysis device 2 in the third embodiment is the same as the linear prediction analysis device 2 in the first embodiment except for processing in the coefficient determination unit 24 and except that a coefficient table storage unit 25 is further included, as shown in
The coefficient determination unit 24 uses a value that is positively correlated with the fundamental frequency corresponding to the input information about the fundamental frequency or a value that is negatively correlated with the fundamental frequency corresponding to the input information about the period and selects a single coefficient table t corresponding to the value that is positively correlated with the fundamental frequency or the value that is negatively correlated with the fundamental frequency, from the two or more coefficient tables stored in the coefficient table storage unit 25 (step S44). For example, the value that is positively correlated with the fundamental frequency corresponding to the information about the fundamental frequency is the fundamental frequency corresponding to the information about the fundamental frequency, and the value that is negatively correlated with the fundamental frequency corresponding to the input information about the period is the period corresponding to the input information about the period.
It is assumed, for example, that the coefficient table storage unit 25 stores two different coefficient tables t0 and t1, the coefficient table t0 stores coefficients wt0(i) (i=0, 1, . . . , Pmax), and the coefficient table t1 stores coefficients wt1(i) (i=0, 1, . . . , Pmax). The two coefficient tables t0 and t1 respectively store the coefficients wt0(i) (i=0, 1, . . . , Pmax) and the coefficients wt1(i) (i=0, 1, . . . , Pmax), which are determined to satisfy wt0(i)<wt1(i) for some orders i at least and satisfy wt0(i)≤wt1(i) for the remaining orders i.
When the value that is positively correlated with the fundamental frequency is equal to or larger than a predetermined threshold, the coefficient determination unit 24 selects the coefficient table t0 as the coefficient table t, and otherwise, selects the coefficient table t1 as the coefficient table t. In other words, when the value that is positively correlated with the fundamental frequency is equal to or larger than the predetermined threshold, that is, when the fundamental frequency is judged to be high, the coefficient table for smaller coefficients for respective orders i is selected, and when the value that is positively correlated with the fundamental frequency is smaller than the predetermined threshold, that is, when the fundamental frequency is judged to be low, the coefficient table for larger coefficients for respective orders i is selected. In other words, when it is assumed that the coefficient table selected by the coefficient determination unit 24 when the value that is positively correlated with the fundamental frequency is a first value is a first coefficient table of the two coefficient tables stored in the coefficient table storage unit 25, and that the coefficient table selected by the coefficient determination unit 24 when the value that is positively correlated with the fundamental frequency is a second value smaller than the first value is a second coefficient table of the two coefficient tables stored in the coefficient table storage unit 25; for each of some orders i at least, the magnitude of the coefficient corresponding to the order i in the second coefficient table is larger than the magnitude of the coefficient corresponding to the order i in the first coefficient table.
Alternatively, the coefficient determination unit 24 selects the coefficient table t0 as the coefficient table t when the value that is negatively correlated with the fundamental frequency is equal to or smaller than a predetermined threshold, and otherwise, selects the coefficient table t1 as the coefficient table t. In other words, when the value that is negatively correlated with the fundamental frequency is equal to or smaller than the predetermined threshold, that is, when the period is judged to be short, the coefficient table for smaller coefficients for respective orders i is selected, and when the value that is negatively correlated with the fundamental frequency is larger than the predetermined threshold, that is, when the period is judged to be long, the coefficient table for larger coefficients for respective orders i is selected. In other words, when it is assumed that the coefficient table selected by the coefficient determination unit 24 when the value that is negatively correlated with the fundamental frequency is a first value is a first coefficient table of the two coefficient tables stored in the coefficient table storage unit 25, and that the coefficient table selected by the coefficient determination unit 24 when the value that is negatively correlated with the fundamental frequency is a second value larger than the first value is a second coefficient table of the two coefficient tables stored in the coefficient table storage unit 25; for each of some orders i at least, the magnitude of the coefficient corresponding to the order i in the second coefficient table is larger than the magnitude of the coefficient corresponding to the order i in the first coefficient table.
Coefficients wt0(0) and wt1(0) for i=0 in the coefficient tables t0 and t1 stored in the coefficient table storage unit 25 are not required to satisfy the relationship wt0(0)≤wt1(0), and values satisfying the relationship wt0(0)>wt1(0) may be used.
Alternatively, it is assumed that the coefficient table storage unit 25 stores three different coefficient tables t0, t1, and t2; the coefficient table t0 stores coefficients wt0(i) (i=0, 1, . . . , Pmax); the coefficient table t1 stores coefficients wt1(i) (i=0, 1, . . . , Pmax); and the coefficient table t2 stores coefficients wt2(i) (i=0, 1, . . . , Pmax). The three coefficient tables t0, t1 and t2 respectively store the coefficients wt0(i) (i=0, 1, . . . , Pmax), the coefficients wt1(i) (i=0, 1, . . . , Pmax), and the coefficients wt2(i) (i=0, 1, . . . , Pmax), which are determined to satisfy wt0(i)<wt1(i)≤wt2(i) for some orders i at least, satisfy wt0(i)≤wt1(i)<wt2(i) for some orders i at least of the other orders i, and satisfy wt0(i)≤wt1(i)≤wt2(i) for the remaining orders i.
It is also assumed that two thresholds th1′ and th2′ that satisfy the relationship 0<th1′<th2′ are determined.
It is also assumed that two thresholds th1 and th2 that satisfy the relationship 0<th1<th2 are determined.
The coefficients wt0(0), wt1(0), and wt2(0) for i=0 in the coefficient tables t0, t1, and t2 stored in the coefficient table storage unit 25 are not required to satisfy the relationship wt0(0)≤wt1(0)≤wt2(0), and values satisfying the relationship wt0(0)>wt1(0) and/or wt1(0)>wt2(0) may be used.
The coefficient determination unit 24 sets the coefficient wt(i) for orders i stored in the selected coefficient table t as the coefficient wO(i) (step S45), that is, wO(i)=wt(i). In other words, the coefficient determination unit 24 obtains the coefficient wt(i) corresponding to order i from the selected coefficient table t and sets the obtained coefficient wt(i) corresponding to order i as wO(i).
The third embodiment differs from the first and second embodiments in that the need for calculating the coefficient wO(i) on a basis of a function of a value that is positively correlated with the fundamental frequency or a value that is negatively correlated with the fundamental frequency is eliminated, and therefore, wO(i) can be determined through a smaller amount of processing.
The two or more coefficient tables stored in the coefficient table storage unit 25 can be described as follows.
It is assumed that a first coefficient table of the two or more coefficient tables stored in the coefficient table storage unit 25 is the coefficient table from which the coefficient determination unit 24 obtains the coefficient wO(i) (i=0, 1, . . . , Pmax) when the value that is positively correlated with the fundamental frequency is a first value; and that a second coefficient table of the two or more coefficient tables stored in the coefficient table storage unit 25 is the coefficient table from which the coefficient determination unit 24 obtains the coefficient wO(i) (i=0, 1, . . . , Pmax) when the value that is positively correlated with the fundamental frequency is a second value smaller than the first value. Here, with respect to each of some orders i at least, the coefficient corresponding to the order i in the second coefficient table is larger than the coefficient corresponding to the order i in the first coefficient table.
It is assumed a first coefficient table of the two or more coefficient tables stored in the coefficient table storage unit 25 is the coefficient table from which the coefficient determination unit 24 obtains the coefficient wO(i) (i=0, 1, . . . , Pmax) when the value that is negatively correlated with the fundamental frequency is a first value; and that a second coefficient table of the two or more coefficient tables stored in the coefficient table storage unit 25 is the coefficient table from which the coefficient determination unit 24 obtains the coefficient wO(i) (i=0, 1, . . . , Pmax) when the value that is negatively correlated with the fundamental frequency is a second value larger than the first value. Here, with respect to each of some orders i at least, the coefficient corresponding to the order i in the second coefficient table is larger than the coefficient corresponding to the order i in the first coefficient table.
A specific example of the third embodiment will be described next. In this example, a quantized value of the period is used as a value that is negatively correlated with the fundamental frequency, and the coefficient table t is selected in accordance with the quantized value of the period.
Input to the linear prediction analysis device 2 are an input signal XO(n) (n=0, 1, . . . , N−1) which is a digital acoustic signal that has passed through a high-pass filter, that has been sampled at 128 kHz, that has been subjected to pre-emphasis, and that includes N samples per frame, and the period T calculated by the period calculation unit 940 with respect to a part of the input signal XO(n) (n=0, 1, . . . , Nn) (Nn is a predetermined positive integer satisfying the relationship Nn<N) of the current frame, as information about the period. The period T with respect to the part of the input signal XO(n) (n=0, 1, . . . , Nn) of the current frame is obtained and stored by including the part of the input signal XO(n) (n=0, 1, . . . , Nn) of the current frame in the signal segment of the frame preceding the input signal in the period calculation unit 940 and calculating the period with respect to XO(n) (n=0, 1, . . . , Nn) in the processing for the signal segment of the preceding frame in the period calculation unit 940.
The autocorrelation calculation unit 21 calculates an autocorrelation RO(i) (i=0, 1, . . . , Pmax) from the input signal XO(n) as given by expression (16) below.
The period T is input to the coefficient determination unit 24, as the information of period. Here, it is assumed that the period T is within a range of 29≤T≤231. The coefficient determination unit 24 obtains an index D from the period T determined by the input information about the period T by the calculation of expression (17) given below. This index D is the value that is negatively correlated with the fundamental frequency and corresponds to the quantized value of the period.
Here, int indicates an integer function. The function drops the fractional portion of an input real number and outputs just the integer portion of the real number.
The coefficient table storage unit 25 stores a coefficient table t0 selected when D=0, a coefficient table t1 selected when D=1, and a coefficient table t2 selected when D=2.
The coefficient table t0 is a table of coefficients at f0=60 Hz (corresponding to a half-value width of 142 Hz) of the conventional method given by expression (13), and the coefficients wt0(i) of respective orders are determined as follows:
The coefficient table t1 is a table of coefficients at f0=50 Hz (corresponding to a half-value width of 116 Hz) given by expression (13), and the coefficients wt1(i) of respective orders are determined as follows. wt1(i)=[1.0, 0.999706, 0.998824, 0.997356, 0.995304, 0.992673, 0.989466, 0.985689, 0.98135, 0.976455, 0.971012, 0.965032, 0.958525, 0.951502, 0.943975, 0.935956, 0.927460]
The coefficient table t2 is a table of coefficients at f0=25 Hz (corresponding to a half-value width of 58 Hz) given by expression (13), and the coefficients wt2(i) of respective orders are determined as follows. wt2(i)=[1.0, 0.999926, 0.999706, 0.999338, 0.998824, 0.998163, 0.997356, 0.996403, 0.995304, 0.99406, 0.992672, 0.99114, 0.989465, 0.987647, 0.985688, 0.983588, 0.981348]
The lists of wt0(i), wt1(i), and wt2(i) given above are sequences of the magnitude of coefficients corresponding to i=0, 1, 2, . . . , 16 in that order from the left up to Pmax=16. In the example shown above, wt0(0)=1.0, and wt0(3)=0.996104103, for example.
As indicated in non-patent literature 1 or 2, the coefficients for i=0 may be treated as an exception, and empirical values such as wt0(0)=wt1(0)=wt2(0)=1.0001 or wt0(0)=wt1(0)=wt2(0)=1.003 may be used. The coefficients for i=0 are not required to satisfy the relationship wt0(i)<wt(i)<wt2(i), and wt0(0), wt1(0), and wt2(0) should not necessarily have the same value. Just for i=0, two or more values of wt0(0), wt1(0), and wt2(0) are not required to satisfy the relationship wt0(i)<wt(i)<wt2(i) in magnitude, such as wt0(0)=1.0001, wt1(0)=1.0, and wt2(0)=1.0, for example.
The coefficient determination unit 24 selects a coefficient table tD corresponding to the index D as the coefficient table t.
The coefficient determination unit 24 sets the coefficients wt(i) in the selected coefficient table t as the coefficient wO(i), that is, wO(i)=wt(i). In other words, the coefficient determination unit 24 obtains the coefficient wt(i) corresponding to an order i from the selected coefficient table t and sets the obtained coefficient wt(i) corresponding to the order i as wO(i).
In the example described above, the coefficient tables t0, t1, and t2 are associated with the index D, but the coefficient tables t0, t1, and t2 may also be associated with a value that is positively correlated with the fundamental frequency or a value that is negatively correlated with the fundamental frequency, other than index D.
A coefficient stored in one of the plurality of coefficient tables is determined as the coefficient wO(i) in the third embodiment. In a modification of the third embodiment, the coefficient wO(i) is also determined by arithmetic processing based on the coefficients stored in the plurality of coefficient tables.
The functional configuration of the linear prediction analysis device 2 in the modification of the third embodiment is the same as that in the third embodiment, shown in
The coefficient table storage unit 25 stores just coefficient tables t0 and t2. The coefficient table t0 stores coefficients wt0(i) (i=0, 1, . . . , Pmax), and the coefficient table t2 stores coefficients wt2(i) (i=0, 1, . . . , Pmax). The two coefficient tables t0 and t2 respectively store the coefficients wt0(i) (i=0, 1, . . . , Pmax) and the coefficients wt2(i) (i=0, 1, . . . , Pmax), which are determined to satisfy wt0(i)<wt2(i) for some orders i at least and satisfy wt0(i)<wt2(i) for the remaining orders i.
It is assumed that two thresholds th1′ and th2′ that satisfy the relationship 0<th1′<th2′ are determined.
Alternatively, it is assumed that two thresholds th1 and th2 that satisfy the relationship 0<th1<th2 are determined.
The coefficients wt0(0) and wt2(0) for i=0 in the coefficient tables t0 and t2 stored in the coefficient table storage unit 25 are not required to satisfy the relationship wt0(0)≤wt2(0), and values satisfying the relationship wt0(0)>wt2(0) may be used.
As shown in
In a fourth embodiment, a conventional linear prediction analysis device is used for an input signal XO(n) to perform linear prediction analysis; a fundamental-frequency calculation unit obtains a fundamental frequency by using the result of the linear prediction analysis; a linear prediction analysis device according to the present invention obtains coefficients that can be transformed to linear prediction coefficients, by using a coefficient wO(i) based on the obtained fundamental frequency.
A linear prediction analysis device 3 according to the fourth embodiment includes a first linear prediction analysis unit 31, a linear prediction residual calculation unit 32, a fundamental-frequency calculation unit 33, and a second linear prediction analysis unit 34, for example, as shown in
The first linear prediction analysis unit 31 works in the same way as the conventional linear prediction analysis device 1. The first linear prediction analysis unit 31 obtains an autocorrelation RO(i) (i=0, 1, . . . , Pmax) from the input signal XO(n), obtains a modified autocorrelation R′O(i) (i=0, 1, . . . , Pmax) by multiplying the autocorrelation RO(i) (i=0, 1, . . . , Pmax) by a predetermined coefficient wO(i) (i=0, 1, . . . , Pmax) for each i, and obtains from the modified autocorrelation R′O(i) (i=0, 1, . . . , Pmax), coefficients that can be transformed to first-order to Pmax-order, which is a predetermined maximum order, linear prediction coefficients.
The linear prediction residual calculation unit 32 calculates a linear prediction residual signal XR(n) by applying linear prediction based on the coefficients that can be transformed to the first-order to Pmax-order linear prediction coefficients or filtering equivalent to or similar to the linear prediction, to the input signal XO(n). Since filtering can also be referred to as weighting, the linear prediction residual signal XR(n) can also be referred to as a weighted input signal.
The fundamental-frequency calculation unit 33 calculates the fundamental frequency P of the linear prediction residual signal XR(n) and outputs information about the fundamental frequency. There are a variety of known methods of obtaining the fundamental frequency, and any of those known methods can be used. The fundamental-frequency calculation unit 33 obtains the fundamental frequency of each of a plurality of subframes constituting the linear prediction residual signal XR(n) (n=0, 1, . . . , N−1) of the current frame, for example. That is, the fundamental frequencies Ps1, . . . , PsM of M subframes XRs1(n) (n=0, 1, . . . , N/M−1), . . . , XRsM(n) (n=(M−1)N/M, (M−1)N/M+1, . . . , N−1), where M is an integer not smaller than 2, are obtained. It is assumed that N is divisible by M. The fundamental-frequency calculation unit 33 outputs information that can determine the maximum value max(Ps1, . . . , PsM) of the fundamental frequencies Ps1, . . . , PsM of the M subframes constituting the current frame, as the information about the fundamental frequency.
The second linear prediction analysis unit 34 works in the same way as the linear prediction analysis device 2 in the first to third embodiments, the linear prediction analysis device 2 in the second modification of the second embodiment, the linear prediction analysis device 2 in the modification of the third embodiment, or the linear prediction analysis device 2 in the common modification of the first to third embodiments. The second linear prediction analysis unit 34 obtains an autocorrelation RO(i) (i=0, 1, . . . , Pmax) from the input signal XO(n), determines the coefficient wO(i) (i=0, 1, . . . , Pmax) on the basis of the information about the fundamental frequency output from the fundamental-frequency calculation unit 33, and obtains coefficients that can be transformed to first-order to Pmax-order, which is a predetermined maximum order, linear prediction coefficients, by using the autocorrelation RO(i) (i=0, 1, . . . , Pmax) and the determined coefficient wO(i) (i=0, 1, . . . , Pmax).
In a modification of the fourth embodiment, a conventional linear prediction analysis device is used for an input signal XO(n) to perform linear prediction analysis; a period calculation unit obtains a period by using the result of the linear prediction analysis; and a linear prediction analysis device according to the present invention obtains coefficients that can be transformed to linear prediction coefficients, by using a coefficient wO(i) based on the obtained period.
A linear prediction analysis device 3 according to the modification of the fourth embodiment includes a first linear prediction analysis unit 31, a linear prediction residual calculation unit 32, a period calculation unit 35, and a second linear prediction analysis unit 34, for example, as shown in
The period calculation unit 35 obtains the period T of a linear prediction residual signal XR(n) and outputs information about the period. There are a variety of known methods of obtaining the period, and any of those known methods can be used. The period calculation unit 35 calculates the period of each of a plurality of subframes constituting the linear prediction residual signal XR(n) (n=0, 1, . . . , N−1) of the current frame, for example. The periods Ts1, . . . , TsM of M subframes XRs1(n) (n=0, 1, . . . , N/M−1), . . . , XRsM(n) (n=(M−1)N/M, (M−1)N/M+1, . . . , N−1), where M is an integer not smaller than 2, are obtained. It is assumed that N is divisible by M. The period calculation unit 35 outputs information that can determine the minimum value min(Ts1 . . . , TsM) of the periods Ts1, . . . , TsM of the M subframes constituting the current frame, as the information of period.
The second linear prediction analysis unit 34 in the modification of the fourth embodiment works in the same way as the linear prediction analysis device 2 in the modification of the first embodiment, the linear prediction analysis device 2 in the first modification of the second embodiment, the linear prediction analysis device 2 in the third modification of the second embodiment, the linear prediction analysis device 2 in the third embodiment, the linear prediction analysis device 2 in the modification of the third embodiment, or the linear prediction analysis device 2 in the common modification of the first to third embodiments. The second linear prediction analysis unit 34 obtains an autocorrelation RO(i) (i=0, 1, . . . , Pmax) from the input signal XO(n), determines a coefficient wO(i) (i=0, 1, . . . , Pmax) on the basis of the information about the period output from the period calculation unit 35, and obtains coefficients that can be transformed to first-order to Pmax-order, which is a predetermined maximum order, linear prediction coefficients, by using the autocorrelation RO(i) (i=0, 1, . . . , Pmax) and the determined coefficient wO(i) (i=0, 1, . . . , Pmax).
<Value that is Positively Correlated with Fundamental Frequency>
As described in specific example 2 of the fundamental-frequency calculation unit 930 in the first embodiment, the fundamental frequency of a part corresponding to a sample of the current frame, of a sample portion to be read and used in advance, also called a look-ahead portion, in the signal processing for the preceding frame can be used as a value that is positively correlated with the fundamental frequency.
An estimated value of the fundamental frequency may also be used as a value that is positively correlated with the fundamental frequency. For example, an estimated value of the fundamental frequency of the current frame predicted from the fundamental frequencies of a plurality of past frames or the average, the minimum value, or the maximum value of the fundamental frequencies of a plurality of past frames can be used as an estimated value of the fundamental frequency. Alternatively, the average, the minimum value, or the maximum value of the fundamental frequencies of a plurality of subframes can also be used as an estimated value of the fundamental frequency.
A quantized value of the fundamental frequency can also be used as a value that is positively correlated with the fundamental frequency. The fundamental frequency prior to quantization can be used, and the fundamental frequency after quantization can also be used.
Further, the fundamental frequency for an analyzed channel of a plurality of channels, such as stereo channels, can be used as a value that is positively correlated with the fundamental frequency.
<Value that is Negatively Correlated with Fundamental Frequency>
As described in specific example 2 of the period calculation unit 940 in the first embodiment, the period of a part corresponding to a sample of the current frame, of a sample portion to be read and used in advance, also called a look-ahead portion, in the signal processing for the preceding frame can be used as a value that is negatively correlated with the fundamental frequency.
An estimated value of the period can also be used as a value that is negatively correlated with the fundamental frequency. For example, an estimated value of the period of the current frame predicted from the fundamental frequencies of a plurality of past frames or the average, the minimum value, or the maximum value of the periods of a plurality of past frames can be used as an estimated value of the period. Alternatively, the average, the minimum value, or the maximum value of the periods of a plurality of subframes can be used as an estimated value of the period. An estimated value of the period of the current frame predicted from the fundamental frequencies of a plurality of past frames and a part corresponding to a sample of the current frame, of a sample portion read and used in advance, also called a look-ahead portion, can also be used. Likewise, the average, the minimum value, or the maximum value of the fundamental frequencies of a plurality of past frames and a part corresponding to a sample of the current frame, of a sample portion read and used in advance, also called a look-ahead portion, can be used.
A quantized value of the period can also be used as a value that is negatively correlated with the fundamental frequency. The period before quantization can be used, and the period after quantization can also be used.
Further, the period for an analyzed channel of a plurality of channels, such as stereo channels, can be used as a value that is negatively correlated with the fundamental frequency.
With regard to comparison between a value that is positively correlated with the fundamental frequency or a value that is negatively correlated with the fundamental frequency and a threshold in the embodiments and the modifications described above, when the value that is positively correlated with the fundamental frequency or the value that is negatively correlated with the fundamental frequency is equal to the threshold, the value should fall in either of the two ranges bordering across the threshold. For example, a criterion of equal to or larger than a threshold may be changed to a criterion of larger than the threshold, and then a criterion of smaller than the threshold needs to be changed to a criterion of equal to or smaller than the threshold. A criterion of larger than a threshold may be changed to a criterion of equal to or larger than the threshold, and then a criterion of equal to or smaller than the threshold needs to be changed to a criterion of smaller than the threshold.
The processing described with the above devices or methods may be executed not only in the order in which it is described but also in parallel or separately, depending on the processing capability of the devices executing the processing or as required.
If the steps of the linear prediction analysis methods are implemented by a computer, the processing details of the functions that should be used in the linear prediction analysis methods are written as a program. By executing the program on the computer, the corresponding steps are implemented on the computer.
The program describing the processing details can be recorded on a computer-readable recording medium. The computer-readable recording medium can take a variety of forms, such as a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory.
The processing means may be configured by executing a predetermined program on the computer, and at least a part of the processing details may be implemented by hardware.
Needless to say, changes can be made appropriately without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2013-149160 | Jul 2013 | JP | national |
This application is a continuation of and claims the benefit of priority under 35 U.S.C. § 120 from U.S. application Ser. No. 17/970,879, filed Oct. 21, 2022, which is a continuation of U.S. application Ser. No. 17/120,462 (now U.S. Pat. No. 11,532,315), filed Dec. 14, 2020, which is a continuation of U.S. application Ser. No. 14/905,158 filed Jan. 14, 2016 (now U.S. Pat. No. 10,909,996), the entire contents of which are incorporated herein by reference. U.S. application Ser. No. 14/905,158 is a National Stage of PCT/JP2014/068895 filed Jul. 16, 2014, which claims the benefit of priority under 35 U.S.C. § 119 from Japanese Application No. 2013-149160 filed Jul. 18, 2013.
Number | Date | Country | |
---|---|---|---|
Parent | 17970879 | Oct 2022 | US |
Child | 18614837 | US | |
Parent | 17120462 | Dec 2020 | US |
Child | 17970879 | US | |
Parent | 14905158 | Jan 2016 | US |
Child | 17120462 | US |