This invention relates to the field of automatic control, particularly, linear reciprocating devices and their control methods.
In various industrial automation devices such as CNC machine tools, inkjet printers, digital printing device and the like, motion control of linear movement has wide-spread applications. During the process of linear reciprocating movement, positioning errors of reciprocation are induced by errors generated by mechanical structure of the transmission system and the measurement deviation of the origin detection device. Methods of relevant techniques for solving the problem include: 1) installing grating scale on the moving object, precisely detecting the position of the moving object, controller carries out decision processing according to feedback position signal of the moving object; 2) converting rotation to linear movement through transmission system, installing rotary encoder or rotary transformer on the drive shaft, the controller carries out decision processing according to feedback position signal of the moving object to achieve reciprocating positioning.
The inventor discovers that method 1) is difficult to be promoted due to high costs of grating scale; method 2) is still insufficient, because positioning precision is affected by measurement deviation of the origin detection device.
This invention is to provide a linear reciprocating device and its positioning control method for solving the problem of positioning precision of linear reciprocating devices.
In an embodiment of the invention, a linear reciprocating device is provided, which includes a base, a linear guide fixedly mounted on the base, a load matching the linear guide for linear reciprocating movement, and a motor driving the load, and further includes: a limit detection device for detecting an origin position of the load; a displacement detection device for detecting a relative displacement value of the load in a positioning region; a controller coupled with the limit detection device, the displacement detection device and the motor.
In an embodiment of the invention, a positioning control method for linear reciprocating device is provided, the linear reciprocating device includes a base, a linear guide fixedly mounted on the base, a load matching the linear guide for linear reciprocating movement, and a motor driving the load, the linear reciprocating device further includes: a limit detection device for detecting an origin position of the load; a displacement detection device for detecting relative displacement value of the load in a positioning region; a controller coupled with the limit detection device, the displacement detection device and the motor. The method includes: the controller controls the motion of the motor according to position detection result of the limit detection device and displacement detection result of the displacement detection device.
The linear reciprocating device and its positioning control method of the embodiments of this invention overcome high cost or low precision of current positioning control due to the use of the limit detection device and the displacement detection device for controlling the positioning, and higher positioning precision is achieved with lower cost.
The drawing described here is used to provide further explanation to this invention, forming part of this application. The exemplary embodiment, and its description is used to explain this invention, but do not form inappropriate limitation to this invention. In the drawing:
This invention is now described in detail by referring to the drawing in combination with the embodiments.
In one embodiment of this invention, a positioning control method of the linear reciprocating device is provided, including: the controller controls the motion of motor 8 according to position detection result of the limit detection device, and displacement detection result of the displacement detection device.
Relevant techniques using grating scale are too costly while deviation is higher using rotary encoder or rotary transformer to control the positioning. In the present embodiment, limit detection device and displacement detection device are used to control the positioning. As cost of the limit detection device and the displacement detection device is lower than that of the grating scale, problem of high cost of positioning control of current technologies is overcome. The limit detection device and the displacement detection device are more precise, therefore, the embodiment achieves higher positioning precision with lower cost.
Preferably, as shown in
Preferably, as shown in
When disk stop 5 on the load of the transmission system passes through optoelectronic sensor 7, optoelectronic sensor 7 can be triggered. Optoelectronic sensor 7 sends a signal A when it detects disk stop 5; the controller stops the motor in real time when the controller receives signal A to prevent the load of the transmission system moving out of its effective route.
Preferably, as shown in
Preferably, as shown in
When block stop 3 on the transmission system collides the slide bar of differential transformer type displacement sensor 1, the slide bar is pushed freely and flexibly, can trigger the differential transformer type displacement sensor 1. Differential transformer type displacement sensor 1 sends a signal B when it detects the block stop 3 colliding its slide bar, the amplitude of signal B is related to the displacement value of the slide bar (i.e., signal B is a linearly related voltage analog signal); when the controller receives signal B, the controller controls motor 8 according to the amplitude of signal B in real time to linearly decelerate until stopping at the positioning position, that is, achieving a highly precise positioning of reciprocating movement.
According to the above embodiments, when load 4 of the transmission system moves towards origin position limit detection device 7, origin position limit detection device 7 detects disk stop 5, sends a corresponding electrical signal (i.e., signal A), and reciprocating controller controls stepper motor 8 of the transmission system to stop immediately; when load 4 of the transmission system moves towards the positioning region from origin position limit detection device 7, the following steps are used: a) the reciprocating controller controls stepper motor 8 of the transmission system to linearly accelerate to an operational speed, and transmission operates stably; b) then, when block stop 3 mounted to load 4 of the transmission system freely and flexibly pushes the slide bar of the displacement detection device 1, said detector outputs a voltage analog signal (i.e., signal B), the controller controls the stepper motor 8 of the transmission system to linearly decelerate according to said voltage analog signal; d) finally, when the load of the transmission system reaches the positioning position, displacement detection device 1 outputs a voltage analog signal corresponding to the positioning position, and the reciprocating controller controls the motor 8 of the transmission system to stop precisely according to said voltage analog signal. Through the above steps, a highly precise positioning process of reciprocating movement is achieved.
Preferably, the linear reciprocating devices of the above embodiments of this invention can be various industrial automation devices such as CNC machine tools, inkjet printers, digital printing device, and the like. For example, the linear reciprocating device of the above embodiments of this invention is a printing device, and load 4 is a print head.
It can be noted from the above description that the above embodiments of this invention achieves highly precise positioning of reciprocating movement under the condition of stable reciprocating movement of the transmission system. Compared with relevant techniques, this invention is simple, cost effective, convenient to achieve highly precise positioning of reciprocating movement, able to be applied widely, easy to be promoted for use, and so on.
While the invention has been described as above in terms of the preferred embodiments, this shall not be used to limit the present invention, it is apparent that modifications and adaptations of the present invention will occur to those skilled in the art. Thus, it is intended that the present invention shall cover such modifications, substitutes of the same kind and variations within the spirit and the concept of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201010621949 | Dec 2010 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN11/84673 | 12/26/2011 | WO | 00 | 9/11/2013 |