Information
-
Patent Grant
-
6531851
-
Patent Number
6,531,851
-
Date Filed
Friday, October 5, 200123 years ago
-
Date Issued
Tuesday, March 11, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 323 273
- 323 275
- 323 279
- 323 280
- 323 282
- 323 285
-
International Classifications
-
Abstract
A linear regulator circuit includes an input terminal for receiving an input voltage and an output terminal for providing an output voltage. A pass device, coupled to the input terminal and the output terminal, generates an output current. A feedback circuit is coupled to the pass device and the output terminal. The feedback circuit increases the output voltage as the output current decreases and decreases the output voltage as the output current increases.
Description
TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to the field of voltage regulators, and more particularly, to a linear regulator circuit and method.
BACKGROUND OF THE INVENTION
Many direct current (DC) electronic devices, such as integrated circuits and microprocessors, require a constant voltage within certain tolerances. The task of providing this voltage is made difficult by the small fluctuations in a voltage generator, and by the variation in load current required by the DC device.
One type of circuit that can be used to provide a constant voltage is a linear regulator. A linear regulator may have a capacitor connected to its output terminal at which the output voltage appears. This capacitor——which can be a discrete component, separate from the linear regulator——functions to stabilize the output voltage when the load current changes rapidly. The suitability of a certain capacitor for this application is governed by two characteristics: its capacitance value, and its equivalent series resistance (ESR) value. The capacitance is a measure of the amount of charge a capacitor can hold. The equivalent series resistance (ESR) value of a capacitor affects how current is supplied by the capacitor, and how quickly it can respond to variations in load current. In a linear regulator implemented according to previously developed techniques, it is desirable to have a capacitor with a high value of capacitance and a low value of ESR. Such capacitors, however, can be relatively large and expensive. This drives up the total cost for providing a constant voltage. It also causes more power to be consumed, and requires more physical space to implement.
SUMMARY OF THE INVENTION
The disadvantages of and problems associated with previously developed linear regulators have been substantially reduced or eliminated using the present invention.
According to one embodiment of the present invention, a linear regulator circuit includes an input terminal for receiving an input voltage and an output terminal for providing an output voltage. A pass device, coupled to the input terminal and the output terminal, generates an output current. A feedback circuit is coupled to the pass device and the output terminal. The feedback circuit increases the output voltage as the output current decreases and decreases the output voltage as the output current increases.
According to another embodiment of the present invention, a method for providing a regulated voltage includes: receiving an input voltage; generating an output voltage and an output current; increasing the output voltage as the output current decreases; and decreasing the output voltage as the output current increases.
According to yet another embodiment of the present invention, a linear regulator circuit includes an input terminal for receiving an input voltage and an output terminal for providing an output voltage. A current sensing device is connected to at least one of the input terminal and the output terminal. The current sensing device senses a current flowing in the linear regulator circuit. A gain amplifier generates a voltage proportionate to the current. An adder combines the output voltage and the voltage output by the gain amplifier. An error amplifier, which may be coupled to the adder and the pass device, causes an increase in the output voltage as the current decreases and causes a decrease in the output voltage as the current increases.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the present invention and for further embodiments, aspects, and advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which:
FIG. 1
is a schematic diagram, in partial block form, of a linear regulator circuit, in accordance with an embodiment of the present invention;
FIG. 2
is a schematic diagram of an exemplary implementation for the linear regulator circuit shown in
FIG. 1
;
FIG. 3
is a schematic diagram, in partial block form, of a linear regulator circuit, in accordance with another embodiment of the present invention; and
FIG. 4
is a schematic diagram of an exemplary implementation for the linear regulator circuit shown in FIG.
3
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The preferred embodiments of the present invention and their advantages are best understood by referring to
FIGS. 1 through 4
of the drawings. Like numerals are used for like and corresponding parts of the various drawings.
According to embodiments of the present invention, the output voltage of a power supply is adjusted proportionately to a current flowing in a linear regulator circuit. As the current increases, the output voltage is lowered. As the current decreases, the output voltage is raised. In a sense, the linear regulator has a finite impedance, so that the output voltage changes as the current changes. The concept or technique of adjusting the voltage at some node according to current flow is commonly known as “droop”. With this technique, a smaller capacitor can be used with the linear regulator, thus reducing the overall cost. It also requires less power and requires less physical space for providing a regulated voltage.
FIG. 1
is a schematic diagram, in partial block form, of a linear regulator circuit
10
, in accordance with an embodiment of the present invention. This linear regulator circuit
10
can be implemented as or incorporated in an integrated circuit chip or semiconductor device which can be coupled with a discrete capacitor (not shown) to provide a regulated voltage to an electronic device. The electronic device may require a DC voltage within certain tolerances. These tolerances represent the limits at which the electronic device can function. For example, if the voltage drops below a certain level, it may be insufficient to trigger circuit elements in the electronic device, or, if the voltage rises above another level, it may damage elements in the electronic device. These tolerances are typically represented as percentages of an “ideal voltage”, for example, 5 V ±5%. As depicted, linear regulator circuit
10
includes an input terminal
12
, an output terminal
14
, a pass device
16
, and a feedback circuit
18
.
The input terminal
12
can be coupled to a power source, which produces an input voltage V
in
for linear regulator circuit
10
. As used herein, the terms “connected”, “coupled”, or any variant thereof means any connection or coupling, either direct or indirect, between two or more elements. An output voltage V
out
for linear regulator circuit
10
appears at output terminal
14
. In one embodiment, the value of input voltage V
in
can be larger than the regulated value of output voltage V
out
because of losses in linear regulator circuit
10
during voltage regulation. The output terminal
14
can be coupled to an electronic device. A capacitor (not shown) may be coupled at output terminal
14
to stabilize the output voltage V
out
of linear regulator circuit
10
. According to an embodiment of the present invention, linear regulator circuit
10
provides a well-regulated voltage, while using a smaller capacitor as compared to previously developed linear regulator devices.
Pass device
16
is coupled between the input terminal
12
and the output terminal
14
. As depicted, pass device
16
may comprise, inter alia, a bi-polar junction transistor (BJT). In other embodiments, pass device
16
may comprise any other suitable device, such as a metal-oxide semiconductor field-effect transistor (MOSFET). Current flows from pass device
16
to output terminal
14
.
The feedback circuit
18
is coupled to the output terminal
14
and the pass device
16
. Generally, the feedback circuit
18
senses or measures a current in linear regulator circuit
10
, and drives the pass device
16
according to the value of the sensed current and the reference voltage. As the current increases, the feedback circuit
18
causes the output voltage V
out
to decrease, and as the current decreases, the feedback circuit
18
causes the output voltage V
out
to increase. In this embodiment, the feedback circuit
18
drives pass device
16
in response to the current flowing from pass device
16
to the output terminal
14
. When the feedback circuit
18
drives the pass device
16
harder, more current flows to output terminal
14
, which ultimately causes the output voltage V
out
to increase. When the feedback circuit
18
drives the pass device
16
less, less current flows from the pass device, which ultimately causes the output voltage V
out
to decrease. This maintains the value of the output voltage V
out
within the tolerances necessary for a particular application. Unlike previously developed techniques, the output voltage V
out
is adjusted in response to current.
In one embodiment, the feedback circuit
18
comprises a current sensing device
20
, a gain amplifier
22
, an adder
24
, and an error amplifier
26
. The current sensing device
20
is coupled between the pass device
16
and the output terminal
14
, and can be implemented with a resistor, as shown. This resistor may have a relatively small resistance value to minimize the amount of power dissipated. The voltage drop across the resistor varies according to the output current, and thus current sensing device
20
can be used to sense the amount of current flowing to the output terminal
14
. The gain amplifier
22
is coupled to the current sensing device
20
and amplifies this voltage drop. Thus, the voltage output by the gain amplifier
22
is greater for larger currents and less for smaller currents. The amount of gain provided by gain amplifier
22
can be adjustable.
Adder
24
is coupled to gain amplifier
22
. The output voltage of the gain amplifier
22
is added to the output voltage V
out
by adder
24
. The adder
24
is coupled to an inverting input of the error amplifier
26
. A non-inverting input of error amplifier
26
receives a reference voltage V
ref
. The error amplifier
26
is coupled to and drives pass device
16
, thus controlling the current output therefrom. If the value of the output voltage V
out
in combination with the output of gain amplifier
22
at the inverting input of error amplifier
26
is less than the value of the reference voltage V
ref
at its non-inverting input, the pass device
16
is driven harder. Alternatively, if the value of the output voltage V
out
in combination with the output of gain amplifier
22
at the inverting input of error amplifier
26
is greater than the value of the reference voltage V
ref
at its non-inverting input, the pass device
16
is driven less.
When the load current is constant, the error amplifier
26
drives the base of pass device
16
according to the difference between the output voltage V
out
and the reference voltage V
ref
. As the load current varies, the voltage from the gain amplifier
22
also varies, thus changing the voltage at the inverting input of the error amplifier
26
. A smaller output current causes the error amplifier
26
to drive the pass device
16
harder. A larger output current causes the error amplifier
26
to drive the pass device
16
less. Thus, if the load is initially low and suddenly increases, the potential stored in the capacitor (not shown) is above the ideal voltage, and the stored energy is provided to stabilize the output voltage V
out
.
In this way, linear regulator circuit
10
compensates for voltage fluctuations of input voltage V
in
at the input terminal
12
, as well as load fluctuations in the electronic device. In one embodiment, the output voltage V
out
of linear regulator circuit
10
may be lower than ideal under high loading conditions so that if the load suddenly becomes light, the output voltage V
out
has further to rise before it exceeds the upper tolerance. Likewise, the output voltage V
out
may be higher than ideal under low loading conditions so that if the load suddenly becomes heavy, the output voltage V
out
has further to fall before it drops below the lower tolerance. Thus, when the load current changes suddenly, the power is supplied to or stored by the discrete capacitor (not shown) until the linear regulator circuit
10
adjusts. The ESR value of the capacitor may not be so great that during the transition period the voltage will fall below or rise above error tolerances.
As the capacitor supplies the power to the electronic device, the output voltage V
out
can fall below the potential stored in the capacitor according to its ESR value. The invention, therefore, by increasing the output voltage V
out
under low loading conditions, effectively increases the error tolerances of the circuit.
For example, consider a linear regulator circuit
10
with an initial output current of 0.1 Amps, where 0.1 Amps is a low load current. Assume that the electronic device coupled to circuit
10
requires an ideal voltage, 5.0 V, plus or minus 5%. The initial output voltage V
out
can be 5.0 V plus 4%, or 5.2 V, since the output voltage may be greater than the ideal voltage under low loading conditions. The capacitor is charged to 5.2 V. If the load current rapidly increases to 1.0 Amps, where 1.0 Amps is a high load current, substantially more current flows through current sensing device
20
. Accordingly, gain amplifier
22
outputs a higher voltage. This causes error amplifier
26
to drive the pass device
16
less, which, in turn, reduces the current flowing to output terminal
14
. Thus, the output voltage V
out
is regulated.
In a linear regulator circuit implemented according to previously developed techniques, the circuit's output voltage, and the capacitor's potential would be at the ideal voltage, and the capacitor would supply at least 5.0 V minus 5%, or 4.75 V. In this example, the greatest possible value of the ESR of the capacitor would be 250 milliohms. At 250 milliohms, 1.0 amps flowing from the capacitor yields a voltage drop of 0.25 V.
However, according to the present invention, the capacitor in this example can have a voltage drop of 9% of the ideal voltage. Thus, the greatest possible value of the ESR of the capacitor in this example would be 450 milliohms. At 450 milliohms, 1.0 amps flowing from the capacitor yields a voltage drop of 0.45 V, dropping the output voltage from 5.2 V to 4.75 V. Thus, compared to previously developed techniques, the same size capacitor can provide more margin for the tolerances. It follows also that the same margin, as compared with previously developed techniques, can be achieved by circuits and methods of the present invention using a smaller capacitor.
FIG. 2
is a schematic diagram of an exemplary implementation for the linear regulator circuit
10
shown in FIG.
1
. As depicted, the adder
24
comprises two resistors: one coupled between the output terminal of gain amplifier
22
and the inverting input terminal of error amplifier
26
, the other coupled between the output terminal
14
and the inverting input terminal of amplifier
26
. As in
FIG. 1
, the adder
24
is also coupled to a inverting input of the error amplifier
26
.
The amount of gain provided by gain amplifier
22
can be fixed or adjustable. As depicted, the amount of gain provided by gain amplifier
22
depends on the resistance value of an adjustable resistor
28
. Thus, the resistance value of resistor
28
can be changed to produce different gains for different applications. In one embodiment, this linear regulator circuit
10
can be implemented as or incorporated in an integrated circuit chip or semiconductor device, while resistor
28
can be a separate, discrete component, thus facilitating the adjustment of gain provided by gain amplifier
22
.
FIG. 3
is a schematic diagram, in partial block form, of a linear regulator circuit
30
, in accordance with another embodiment of the present invention. This linear regulator circuit
30
comprises an input terminal
32
, an output terminal
34
, and a feedback circuit
38
.
A capacitor (not shown) may be coupled at output terminal
34
to stabilize the output voltage V
out
of linear regulator circuit
30
. According to an embodiment of the present invention, linear regulator circuit
30
provides a well-regulated voltage, while using a smaller capacitor as compared to previously developed linear regulator devices.
Pass device
36
is coupled between the input terminal
32
and the output terminal
34
. As depicted, pass device
36
may comprise, inter alia, a BJT having multiple collectors. In other embodiments, pass device
36
may comprise any other suitable device, such as a MOSFET. Current may flow from input terminal
32
into pass device
36
.
The feedback circuit
38
is coupled to the input terminal
32
, the output terminal
34
and the pass device
36
. In this embodiment, the feedback circuit
38
drives pass device
36
in response to the current flowing from the input terminal
32
to the pass device
36
. When the feedback circuit
38
drives the pass device
36
harder, the output voltage V
out
increases. When the feedback circuit
38
drives the pass device
36
less, the output voltage V
out
decreases.
In one embodiment, the feedback circuit
38
comprises a current sensing device
40
, a gain amplifier
42
, an adder
44
, and an error amplifier
46
. The current sensing device
40
is coupled between the input terminal
32
and the pass device
36
, and may have a relatively small resistance value to minimize the amount of power dissipated. The voltage across the current sensing device
40
varies according to the input current, and thus current sensing device
40
can be used to sense the amount of current flowing from the input terminal
32
. The gain amplifier
42
is coupled to the current sensing device
40
and amplifies this voltage drop. Thus, the voltage output by the gain amplifier
42
is greater for larger currents and less for smaller currents. In one embodiment, the amount of gain provided by gain amplifier
42
can be adjustable.
Adder
44
is coupled to gain amplifier
42
. The output voltage of the gain amplifier
42
is added to an output voltage V
out
by adder
44
. The adder
44
is coupled to an inverting input of the error amplifier
46
. A non-inverting input of error amplifier
46
receives a reference voltage V
ref
. The error amplifier
46
is coupled to and drives pass device
36
, thus controlling the current output therefrom, and thus the output voltage V
out
. If the value of the output voltage V
out
in combination with the output of gain amplifier
42
at the inverting input of error amplifier
46
is less than the value of the reference voltage V
ref
at its non-inverting input, the pass device
36
is driven harder, thus causing the output voltage V
out
to increase. Alternatively, if the value of the output voltage V
out
in combination with the output of gain amplifier
42
at the inverting input of error amplifier
46
is greater than the value of the reference voltage V
ref
at its non-inverting input, the pass device
36
is driven less, thus causing the output voltage V
out
to decrease.
FIG. 4
is a schematic diagram of an exemplary implementation for the linear regulator circuit
30
shown in FIG.
3
. As depicted, the adder
44
comprises two resistors: one coupled between the output terminal of gain amplifier
42
and the inverting input terminal of error amplifier
46
, the other coupled between the output terminal
34
and the inverting input terminal of amplifier
46
. As in
FIG. 3
, the adder
44
is also coupled to an inverting input of the error amplifier
46
.
The amount of gain provided by gain amplifier
42
can be fixed or adjustable. As depicted, the amount of gain provided by gain amplifier
42
depends on the resistance value of an adjustable resistor
48
. Thus, the resistance value of resistor
48
can be changed to produce different gains for different applications. In one embodiment, this linear regulator circuit
30
can be implemented as or incorporated in an integrated circuit chip or semiconductor device, while resistor
48
can be a separate, discrete component, thus facilitating the adjustment of gain provided by gain amplifier
42
.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from this invention in its broader aspects, and, therefore, the appending claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Claims
- 1. A linear regulator circuit comprising:an input terminal for receiving an input voltage; an output terminal for providing an output voltage; a pass device coupled to the input terminal and the output terminal, the pass device operable to generate an output current; and a feedback circuit coupled to the pass device and the output terminal, the feedback circuit operable to increase the output voltage as the output current decreases and to decrease the output voltage as the output current increases, wherein the feedback circuit comprises: a gain amplifier operable to generate a voltage proportionate to the output current; an adder operable to combine the output voltage and the voltage generated by the gain amplifier; and an error amplifier coupled to the adder, a reference voltage, and the pass device.
- 2. The linear regulator circuit of claim 1, wherein the adder comprises a first resistor coupled between the gain amplifier and an input terminal for the error amplifier, and a second resistor coupled between the output voltage and an input terminal for the error amplifier.
- 3. The linear regulator circuit of claim 1, wherein the pass device comprises a transistor.
- 4. The linear regulator circuit of claim 1, wherein the transistor is a bipolar transistor.
- 5. The linear regulator circuit of claim 3, wherein the transistor is a MOSFET.
- 6. The linear regulator circuit of claim 1, wherein a resistor is coupled to the pass device.
- 7. The linear regulator circuit of claim 1, wherein the gain amplifier has a fixed gain.
- 8. The linear regulator circuit of claim 1, wherein the gain amplifier has an adjustable gain.
- 9. The linear regulator circuit of claim 8, wherein the gain of the amplifier is adjusted with a variable resistance.
- 10. The linear regulator circuit of claim 1, wherein the linear regulator circuit is implemented as an integrated circuit.
- 11. A method for providing a regulated voltage, the method comprising:receiving an input voltage; generating an output voltage and an output current; increasing the output voltage as the output current decreases; and decreasing the output voltage as the output current increases; wherein increasing and decreasing comprises: generating a voltage proportionate to the output current; and combining the output voltage and the voltage proportionate to the output current.
- 12. A linear regulator circuit comprising:an input terminal for receiving an input voltage; an output terminal for providing an output voltage; a current sensing device connected to at least one of the input terminal and the output terminal, the current sensing device operable to sense a current flowing in the linear regulator circuit; a gain amplifier operable to generate a voltage proportionate to the current; an adder operable to combine the output voltage and the voltage output by the gain amplifier; and an error amplifier coupled to the adder, a reference voltage, and the pass device, the error amplifier operable to cause an increase in the output voltage as the current decreases and to cause a decrease in the output voltage as the current increases.
- 13. The linear regulator circuit of claim 12, wherein the pass device is a transistor.
- 14. The linear regulator circuit of claim 13, wherein the transistor is a bipolar transistor.
- 15. The linear regulator circuit of claim 13, wherein the transistor is a MOSFET.
- 16. The linear regulator circuit of claim 12, wherein the adder comprises a first resistor coupled between the gain amplifier and an input terminal for the error amplifier, and a second resistor coupled between the output voltage and an input terminal for the error amplifier.
- 17. The linear regulator circuit of claim 12, wherein the gain amplifier has a fixed gain.
- 18. The linear regulator circuit of claim 12, wherein the gain amplifier has adjustable gain.
- 19. The linear regulator circuit of claim 18, wherein the gain of the amplifier is adjusted with a variable resistance.
- 20. The linear regulator circuit of claim 12, wherein the linear regulator circuit is implemented as an integrated circuit.
US Referenced Citations (4)
Number |
Name |
Date |
Kind |
5191278 |
Carpenter |
Mar 1993 |
A |
5477132 |
Canter et al. |
Dec 1995 |
A |
5559424 |
Wrathall et al. |
Sep 1996 |
A |
6369554 |
Aram |
Apr 2002 |
B1 |