The present invention relates broadly to linear-rotary electromagnetic actuators, and more particularly to linear-rotary electromagnetic actuators suitable for use with feedback control.
Several approaches in the past to provide an actuator capable of both linear and rotary motion have encountered challenges. For example, in high-speed high-precision applications such as pick-and-place, die-bonding, etc, accuracy in the positioning control of the actuating mechanism is critical. For this reason, electromagnetic driving schemes preferably with some feedback control are favoured over pneumatic or hydraulic systems. One electromagnetic approach therefore provides a single rotor with differently oriented magnets arranged in a checkerboard configuration to produce a first magnetic field for linear motion and a second magnetic field for rotary motion. The resulting rotor is unfortunately both difficult and expensive to manufacture. Furthermore, in applications where the range of linear and/or rotary movement is relatively large, as the actuator moves linearly, it is likely to move out of range of the rotary feedback sensor or vice versa. One possible solution is to use multiple linear feedback sensors or multiple rotary feedback sensors, but this again can be expensive.
A need therefore exists to provide a linear-rotary electromagnetic actuator that can address the abovementioned problems.
In accordance with a first aspect, there is provided a linear-rotary electromagnetic actuator comprising a rotation module having an output shaft and a rotary encoder configured to sense rotary motion of the output shaft; and a translation module having an intermediate translator coupled to the rotation module and a linear encoder configured to sense translational motion of the intermediate translator.
The rotary encoder may be fixed relative to the intermediate translator.
The rotary encoder may be proximal to the output shaft.
The rotation module may further comprise a Halbach array of permanent magnets arranged to generate a magnetic flux in a single direction in a coil operating region of the Halbach array.
The translation module may further comprise a coil receiving gap between a pair of permanent magnets disposed in an attracting position across the gap.
The translation module may further comprise a first coil arrangement disposed in the coil receiving gap between the pair of permanent magnets, and the rotation module further comprises a second coil arrangement disposed in the coil operating region of the Halbach array of permanent magnets, the intermediate translator being coupled to the second coil arrangement such that the intermediate translator is configured to translate translational motion to the second coil arrangement.
The intermediate translator may further be coupled to the first coil arrangement such that the intermediate translator is configured to translate translational motion of the first coil arrangement to the second coil arrangement.
The linear-rotary electromagnetic actuator may comprise a control scheme configured to provide a first current to the first coil arrangement and a second current to the second coil arrangement, the first current being independent of the second current.
The second coil arrangement may be configured for a single phase, non-commutation control scheme.
The second coil arrangement may be configured for a multi-phase, commutation control scheme.
The translation module and the rotary module may be disposed with an axis of rotation of the rotary module parallel to a linear translation axis of the translation module.
The axis of rotation of the rotary module coincides with the linear translation axis of the translation module.
The linear encoder may be fixed relative to the intermediate translator.
a and b: Rotation module of a linear-rotary electromagnetic actuator according to an example embodiment;
a and: b: Translation module of a linear-rotary electromagnetic actuator according to an example embodiment;
In one embodiment, a rotary electromagnetic actuator is provided which can achieve a rotational motion of about ±60° with a direct single phase control scheme. An additional set of coil wire, which can be placed 90° out of phase to the coil, increases the rotational range to 360°. In another embodiment, a 2-DOF (degree-of-freedom) linear-rotary electromagnetic actuator is provided. This embodiment employs a Lorentz-force technique and can provide a direct and non-commutation drive while adopting a coil-moving configuration to achieve low moving mass, and high actuating speeds. To deliver independent linear and rotary motion, this actuator mainly includes a translation module and a rotation module.
The moving-coil rotor 300 is located at the center of the coil operating region 302, as show in
As will be appreciated by a person skilled in the art, in a single phase, i.e. non-commutation control scheme applied to a single coil is sufficient for rotating the moving coil rotor 300 in ±60° with reference to the magnetic flux direction indicated at numeral 310. That is, in the example embodiment, a dc current is fed into the coil 304, and the polarity of the dc current is changed to change the direction of rotation. It will further be appreciated that practically, controlled rotational movement may be limited to a range of ±(60−Δ)°, since at the ±60° positions, the resulting Lorentz force will substantially be directed radially outward or inward. In example embodiments, Δ≦45°, and more particular Δ=30° may be implemented in one embodiment. To hold the rotor at a particular angular position, the polarity of the coil are constantly regulated through a feedback control via an angular (rotary) encoder.
In another example embodiment, 360° of rotational motion can be achieved through a two-phase commutation control scheme, employing a second coil. For example,
In this embodiment, a two-phase control scheme is employed. One or two sources may be used, where the supply of DC current to one coil is lagging with regard to the other coil. For a single DC source scheme, an amplifier with designated A&B phase I/O can be used in one example embodiment. This is a hardware approach where the amplifier has internal circuitry that synchronizes the DC current feeding to both coil simultaneously. For a two-source approach, two amplifiers, where each has a single phase I/O, can be used in another example embodiment, together with an external controller programmed with software for performing synchronization. The DC current feed into the second coil winding will always be lagging the DC current of first coil winding by a fixed time period. This operation, termed “out-of-phase” scheme, ensures that a continuous rotation motion of 360° can be achieved. To hold the rotor at a particular angular position, the polarities of both coils are constantly regulated through a feedback control via an angular (rotary) encoder.
As will be appreciated by a person skilled in the art, this enables control of the total torque applied to the moving coil rotor 404 as a result of the two vectorized force pairs.
In one embodiment, the rotation module may be integrated with a translation module to form a linear-rotary electromagnetic actuator.
The DM configuration preferably enables the magnetic flux density within the effective air gap 506 to be equal or larger than the residual magnetic density of a Permanent Magnet (PM). In addition, the magnetic flux density is advantageously evenly distributed throughout the effective air gap 506.
Two-dimensional (2D) magnetic flux flow of a DM configuration was conducted through finite element simulator as shown in
The linear-rotary electromagnetic actuator according to the example embodiment is formed by integrating the translation module 800 with the rotation module 306 as illustrated in
Accordingly, translational movement of the moving-coil linear translator of the translation module 800 is transferred to the (output) component or shaft 908, and independently the shaft 908 is rotatable under the control of the rotation module 306. In this embodiment, a rotary encoder (not shown) may be provided at the output shaft 908 where the rotary encoder would be advantageously capable of sensing the rotational motion of the output shaft 908 for the full range of rotational motion. The full range of rotational motion may advantageously be as much as 360°, depending on the desired application as it is no longer constrained by cost and other physical limitations to a smaller range of rotational motion. A linear encoder (not shown) may be provided at the intermediate translator 904 or between the rotation module 306 and translation module 800 such that it is advantageously capable of sensing the translational position of the intermediate translator 904 that is driven only by the translation module 800 for the full range of translational motion. Advantageously, only one linear encoder is required for the full range of translational motion. As will be appreciated by a person skilled in the art, the rotary encoder and the linear encoder in effect sense the rotational and translational position respectively of the output shaft 908 for feedback to a control circuit (not shown).
It will be appreciated that in a different embodiment, a linear-rotary electromagnetic actuator 1000 may be formed by similarly integrating the translation module 800 with the rotation module 306, but without internal supporting bearings, as illustrated in
The moving-coil configuration in the example embodiments can provide high-speed actuation due to the low moving mass of the rotor and the translator. Both moving-coil translator and rotor are connected together to simplify the entire moving component and are ironless to eliminate hysteresis and clogging effects. The Lorentz-force actuation technique allows the actuator to provide a direct single-phase non-commutation control for ±60° and a linear current-force relationship. The Halbach PM array and DM configuration can enhance the output torque and the output thrust force of the actuator respectively.
Accordingly, translational movement of the moving-coil of the translation module 800 is transferred to the (output) shaft 1114 by components collectively referred to here as the intermediate translator, and independently the output shaft 1114 is rotatable under the control of the rotation module 306. In this embodiment, a rotary encoder 1118 is provided fixed relative to, and in this embodiment mounted on, the intermediate translator (more particular on the connecting plate 1204) at the output component or shaft 1114 where the rotary encoder 1118 is advantageously capable of sensing the rotational motion of the output shaft 1114 for the full range of rotational motion. The full range of rotational motion may advantageously be as much as 360°, depending on the desired application as it is no longer constrained by cost and other physical limitations to a smaller range of rotational motion. A linear encoder 1120 is provided fixed relative to, and in this embodiment mounted on, the intermediate translator (more particular on the connecting beam 1107) such that it is advantageously capable of sensing the translational position of the intermediate translator (and thus the output shaft 1114) that is driven only by the translation module 800 for the full range of translational motion. Advantageously, only one linear encoder is required for the full range of translational motion. As will be appreciated by a person skilled in the art, the rotary encoder 1118 and the linear encoder 1120 in effect sense the rotational and translational positions respectively of the output shaft 1114 for feedback to the control circuit (not shown). Advantageously, the control circuit may drive the rotation module 306 and the translation module 800 by providing a current to the moving coil of the rotation module independent of a current provided to the moving coil of the translation module.
Another example embodiment of a linear-rotary electromagnetic actuator 1200 is shown in
Example embodiments of the rotation module of the present invention can offer a robust configuration for 360° of rotational motion using a direct two-phase commutation control scheme together with an additional coil, which is placed at 90° out of phase to a first coil of the rotor. Furthermore, three coils at 60° out of phase with a direct three-phase commutation control scheme can also be employed to enhance the torque and accuracy of the rotational motion.
The DM configuration in the translation module allows the implementation of a Lorentz-force technique to achieve a linear and direct translational motion. A moving-coil configuration is employed in both the translation and the rotation modules to provide a low moving-mass, non-hysteresis and clog-less motion in a linear-rotary electromagnetic actuator according to present embodiments. However, similar motions can also be realized through a moving-magnet approach by fixing the coil-wound translator and rotor while the permanent-magnet stators become free-moving.
The multi-coil arrangement in the example embodiments allows one independent control scheme to be implemented on each module. Thus, the rotation module (rotational motion) and the translation module (translational motion) may be controlled independently of each other.
Applications of embodiments of the linear-rotary magnetic actuator include in high-speed and high-precision parts handling (pick-and-place) and assembly, e.g.: pick-and-place tool heads for PCB assembly (as in Surface-Mounting Technology); 3D integrated circuit chip assembly; wafer sorting; die attaching; electronic packaging; optoelectric assembly, etc.
It will be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects to be illustrative and not restrictive. For example, various control circuits known to a person skilled in the art may be used in conjunction with the linear-rotary electromagnetic actuators described in the foregoing.
Number | Date | Country | Kind |
---|---|---|---|
200906905-5 | Oct 2009 | SG | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SG2010/000394 | 10/14/2010 | WO | 00 | 6/26/2012 |