Exemplary embodiments of the present invention relate generally to door, lift gate, glass window and movable panel latches and, more particularly, to latches for vehicles.
A vehicle frequently includes displaceable panels such as a door, hood, trunk lid, hatch and the like which are affixed for hinged or sliding engagement with a host vehicle body. Cooperating systems of latches and strikers are typically provided to ensure that such panels remain secured in their fully closed position when the panel is closed.
A latch typically includes a fork bolt that is pivoted between an unlatched position and a primary latched position when the door is closed to latch the door in the closed position. The fork bolt is typically held in the primary latched position by a detent lever that pivots between an engaged position and a disengaged position. The detent lever is spring biased into the engaged position and thus, holds the fork bolt in the primary latched position when in the engaged position and releases the fork bolt when it is moved to the disengaged position so that the door can be opened.
The fork bolt is pivoted to the primary latched position by a striker attached to, for example, an associated door jamb when the door is closed. Once in the primary latched position, the detent lever engages the fork bolt to ensure the assembly remains latched.
Some vehicles have power unlatching mechanisms that electrically release the door latch. These power unlatching mechanisms move the detent lever from the engaged position to the disengaged position such that the fork bolt can be rotated or pivoted to the unlatched position.
In current latch systems, it is desirable to use a switch or micro switch to detect the status of the latch in order to safely carry out a locking measure or initiate electrical opening after locking. Because the various applications requiring latches may differ significantly, it is desirable to have flexibility in the placement of the switch within the latch system.
In accordance with an exemplary embodiment of the present invention, a latch is provided including a housing having a wall. A fork bolt is pivotally coupled to the housing and movable between an unlatched and a latched position. A detent lever is pivotally coupled to the housing and cooperates with the fork bolt. A flexible member is connected or integral to the housing of the latch. Proximate to a free end of the flexible member is a protruding portion. A link has a first end rotationally coupled to the fork bolt and a second end arranged to move linearly between a first position and a second position. When the fork bolt is in an unlatch position, the second end of the link applies a rotational force to the flexible member.
According to another exemplary embodiment of the present invention, a method of creating a signal is provided including disengaging a detent lever from a fork bolt. The fork bolt is then rotated from a first position to a second position. A switch is activated by a flexible member causing the switch to create a signal.
According to yet another embodiment of the invention, a latch is provided including a housing having a wall and a flexible member. The flexible member has a distal end with an angled surface. A fork bolt is pivotally coupled to the housing and movable between an unlatched and a latched position. A detent lever is pivotally coupled to the housing and arranged to cooperate with the fork bolt. A link has a first end rotationally coupled to the fork bolt and a second end in slidable engagement with the wall. The link moves linearly between a first position and a second position in response to rotation of the fork bolt. When the fork bolt is in an unlatched position, the cam surface of the second link contacts the angled surface of the flexible member, causing the flexible member to rotate.
The above-described and other features and advantages of the present invention will be appreciated and understood by those skilled in the art from the following detailed description, drawings, and appended claims.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings in which:
Although the drawings represent varied embodiments and features of the present invention, the drawings are not necessarily to scale and certain features may be exaggerated in order to illustrate and explain exemplary embodiments the present invention. The exemplification set forth herein illustrates several aspects of the invention, in one form, and such exemplification is not to be construed as limiting the scope of the invention in any manner.
Certain passenger vehicles are equipped with a rear vehicle storage compartment, commonly known as a trunk. The trunk is closed by a deck lid that is hinged to the vehicle body and swings open to provide access to the storage compartment. Similarly, other vehicles are equipped with a lift gate that allows access to the rear of the vehicle through a gate that is hinged at or near the roof line of a vehicle and opens upward. Other vehicles have sliding doors that run horizontally on a track between an opened and closed position. Each of the deck lid, lift gate or sliding door can be thought of as panels that allow access to the interior of the vehicle compartment. Compartment latches, enable each of these types of panels to be secured and closed.
A compartment latch, as shown, is useful for a side compartment, such as a passenger door of a vehicle. The latch can provide a signal that the compartment panel is open. However, the latch is applicable to any environment where the features of the various embodiments of the invention are desired. For example, the latch can be attached to a vehicle structure such that the fork bolt is moved between the open position and the closed position when a hood, door, window, lift gate, etc. is opened and closed and the fork bolt engages a striker (not shown) that is attached to the hood, door, window, lift gate, etc. Alternatively, the latch can be secured to the hood, door, window, lift gate, etc. and the striker may be secured to the vehicle body at an opening into which the hood, door, window, lift gate, etc. is received.
Referring now to at least
Referring to
Fork bolt 40 has a first shoulder 42, and a second shoulder 44 disposed on opposite sides of throat 48 that receives a striker. The housing 20 of the latch 10 has an opening 25 complementary to throat 48 for receiving the striker in the fork bolt 40. Fork bolt 40 additionally includes a third shoulder 46 that contacts a surface 65 of the detent lever 64 when rotating between a latched and an unlatched position, and a fourth shoulder 52 located adjacent the stud 50 opposite the throat 48. The detent lever 64 has a shoulder 66 for engagement with a shoulder of the fork bolt 40. The detent lever 64 additionally includes an end 68 that extends perpendicularly from the surface of the detent lever 64 for engagement with the release mechanism 23.
When the fork bolt 40 rotates between a latched and an unlatched position, a contact surface 47 of the third shoulder 46 of the fork bolt 40, slidably engages a complementary engagement surface 65 of the detent lever 64. Once the fork bolt 40 reaches the closed position, the detent lever 64 is spring biased into contact with the fork bolt 40 such that the fork bolt 40 cannot rotate into the open position unless the detent lever 64 is mechanically released or disengaged. When the fork bolt is latched and the detent lever is engaged with the fork bolt 40, surface 67 of the detent lever's 64 shoulder 66 contacts surface 43 of the fork bolt's first shoulder 42. In this latched position, a striker (not shown) is captured within the throat 48 of the fork bolt 40. In an alternate embodiment, the fork bolt 40 may have an additional fifth shoulder disposed between the first shoulder 42 and the third shoulder 46. Once the striker (not shown) engages the throat 48 of the fork bolt 40, the fork bolt rotates until the surface 67 of detent lever 64 engages this additional fifth shoulder, thereby securing the fork bolt 40 in a known safety position.
To open the latch, actuation of the release mechanism 23 engages end 68 of the detent lever 64 to move the detent lever 64 out of engagement with the fork bolt 40. As the motor 26 rotates the motor shaft, the worm gear 28 coupled to the shaft rotates. Because the worm gear 28 also engages the rotary gear 30, driving the motor causes the rotary gear 30 to rotate. A cam surface 32 extends perpendicularly from the planar surface of gear 30. As the rotary gear 30 rotates, the cam surface 32 contacts the end 68 of the detent lever 64 extending perpendicularly from the surface of the detent lever 64. The cam surface 32 exerts a force on the end 68 opposite the biasing force of spring 70 causing the detent lever 64 to rotate to a disengaged position away from fork bolt 40.
Referring now to
A link 58 is rotationally connected at a first end 59 to a fourth shoulder 52 of the fork bolt 40 by a pin 54. The link 58 extends in the direction of the flexible member 74, adjacent a wall 21 of the housing 20, such that a second end 60 of the link 58 is near angled surface 77 of protruding portion 76. In one embodiment, the second end 60 of the link 58 is larger and more rounded than the first end 59. In the exemplary embodiment, the second end includes a contact surface 61 and an opposing cam surface 63. Because the first end 59 of the link 58 is fastened to the fork bolt 40, rotation of the fork bolt 40 between an open and a closed position causes the link 58 to slide along wall 21 and move relative to the flexible member 74.
When the latch 10 is closed, as illustrated in
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/599,667 filed Feb. 16, 2012, the contents of which are incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
4814557 | Kato | Mar 1989 | A |
4927204 | Asada | May 1990 | A |
5273324 | Kobayashi | Dec 1993 | A |
5516164 | Kobayashi | May 1996 | A |
5564761 | Mizuki et al. | Oct 1996 | A |
5713613 | Honma et al. | Feb 1998 | A |
5765884 | Armbruster | Jun 1998 | A |
6076868 | Roger et al. | Jun 2000 | A |
6264253 | Takaishi | Jul 2001 | B1 |
6341448 | Murray et al. | Jan 2002 | B1 |
6422615 | Roos et al. | Jul 2002 | B1 |
6428059 | Kobayashi et al. | Aug 2002 | B2 |
6886869 | Martinez et al. | May 2005 | B2 |
7311330 | Kachouh | Dec 2007 | B2 |
20050001437 | Brose | Jan 2005 | A1 |
20110254288 | Gaucher | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
19547582 | Jun 1997 | DE |
Number | Date | Country | |
---|---|---|---|
20130214543 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61599667 | Feb 2012 | US |