This disclosure relates to a linear track of a diagnostic analyzer. The linear track has a pre-treatment lane which allows blood samples disposed within the pre-treatment lane to be pre-treated simultaneously as diagnostic testing is conducted on blood samples disposed within one or more parallel processing lanes. This increases through-put of the diagnostic analyzer.
Diagnostic analyzers are used to conduct testing on blood samples to determine a characteristic, trait, property, or condition of the blood samples. Diagnostic analyzers often utilize moving circular carousels which hold reaction vessels into which blood samples and reagents are added. In order to pre-treat the blood samples needing incubation time prior to diagnostically testing these blood samples, the circular carousels typically rotate around multiple times while the blood samples within the circular carousels are incubating. This increases the time duration of completing the analysis because the diagnostic analyzer has to wait until the circular carousels finish the pre-treatment cycles before diagnostically testing the pre-treated blood samples. Alternatively, a segment of a circular carousel may be used for a pretreatment incubation then transferred back to the first incubation entry point to continue processing. This decreases throughput because new blood samples are delayed to allow pretreatment samples in process to continue. Moreover, use of the circular carousels requires a great deal of space, and requires that spots on the circular carousels be reserved for pre-treatment.
A diagnostic analyzer and method of testing a blood sample is needed to overcome one or more of the issues of one or more of the existing diagnostic analyzers.
In one embodiment, a diagnostic analyzer system is disclosed. The diagnostic analyzer system includes a primary process lane, a pretreatment process lane, and a transferring device. The primary process lane includes: a plurality of movable reaction vessels for carrying out diagnostic testing on samples in the plurality of movable reaction vessels; a mixer for agitating the samples in the plurality of movable reaction vessels; and a diagnostic reaction optical detection unit in light communication with one of the samples in one of the plurality of movable reaction vessels. The pretreatment process lane includes a second plurality of movable reaction vessels operable to incubate, within the second plurality of movable reaction vessels, samples containing reagent to form pretreated samples with at least a portion of the pretreatment lane not being coextensive with the primary process lane. The transferring device is for transferring the pretreated samples from the pretreatment process lane to the primary process lane.
In another embodiment, a diagnostic analyzer system is disclosed. The diagnostic analyzer system includes a linear track, at least one pipetting device, and at least one diagnostic module. The linear track includes a pre-treatment lane disposed parallel to at least one processing lane. The linear track is for moving reaction vessels, containing samples, held by the pre-treatment lane and by the at least one processing lane. The pre-treatment lane is for pre-treating the samples in the reaction vessels in the pre-treatment lane. The pre-treatment lane is not connected to any diagnostic module for testing the samples in the reaction vessels in the pre-treatment lane. The at least one pipetting device is for transferring the pre-treated samples from the reaction vessels in the pre-treatment lane to the reaction vessels in the at least one processing lane. The at least one diagnostic module is connected to the at least one processing lane for testing the pre-treated samples transferred into the reaction vessels in the at least one processing lane.
In another embodiment, another diagnostic analyzer system is disclosed. The diagnostic analyzer system includes a linear track, sample pipetting devices, reagent pipetting devices, and at least one diagnostic module. The linear track includes processing lanes and a pre-treatment lane parallel to the processing lanes. The linear track is for moving reaction vessels, containing samples, held by the processing lanes and the pre-treatment lane. The sample pipetting devices are for pipetting the samples into the reaction vessels of each of the respective processing lanes and the pre-treatment lane. The reagent pipetting devices are each dedicated to a different one of the respective processing lanes and the pre-treatment lane for pipetting reagents into the reaction vessels of each of the respective processing lanes and the pre-treatment lane. The pre-treatment lane is for incubating the samples containing the pipetted reagents in the reaction vessels in the pre-treatment lane. The pre-treatment lane is not connected to any diagnostic module for testing the incubated samples containing the pipetted reagents in the reaction vessels in the pre-treatment lane. One of the sample pipetting devices is also for transferring the incubated samples containing the pipetted reagents from the reaction vessels in the pre-treatment lane to the reaction vessels in the processing lanes. The at least one diagnostic module is connected to the processing lanes for testing the incubated samples, containing the pipetted reagents, transferred into the reaction vessels in the processing lanes.
In still another embodiment, a method of testing a sample using a diagnostic analyzer is disclosed. In one step, a linear track, comprising a pre-treatment lane and at least one parallel processing lane, is moved thereby moving reaction vessels containing samples held by the pre-treatment lane and by the at least one parallel processing lane. In another step, the samples in the reaction vessels of the pre-treatment lane are pre-treated without diagnostically testing them. In an additional step, the pre-treated samples are pipetted from the reaction vessels in the pre-treatment lane to the reaction vessels in the at least one parallel processing lane. In yet another step, the pipetted pre-treated samples in the reaction vessels of the at least one parallel processing lane are diagnostically tested.
The scope of the present disclosure is defined solely by the appended claims and is not affected by the statements within this summary.
The disclosure can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure.
Viewing
Subsequently, the at least one reagent pipettor 46 pipettes reagents 52 from the reagent storage zone 16 of
Next, in the embodiment of
While the incubation of the pre-treated samples 22 is being done in the pre-treatment lane 32, the processing lanes 28 and 30 simultaneously process (i.e. diagnostically test) samples 22 (which may or may not have been pre-treated in the pre-treatment lane 32) in the processing lanes 28 and 30. In such manner, use of the pre-treatment lane 32 significantly increases the throughput of the diagnostic analyzer system 10 while reducing the space needed for running pre-treatments on the samples 22 due to the pre-treatment lane 32 being disposed on the same track 24 but substantially separate from the processing lanes 28 and 30 such that at least a portion of the pretreatment lane 32 is not cooextensive with the primary processing lanes 28 and 30. In the embodiment of
It is noted that, in one preferred embodiment, no processing (i.e. diagnostic testing) of the samples 22 takes place in the pre-treatment lane 32. No diagnostic modules are connected to the pre-treatment lane 32 for testing the samples 22 in the pre-treatment lane 32. The samples 22 in the pre-treatment lane 32 only have reagents 52 added to them and then incubate prior to being transferred to the processing lanes 28 and 30 without anything further being done to the samples 22 in the pre-treatment lane 32 (i.e. no treatments, processes, or diagnostic testing).
When a pre-treatment of samples 22 with reagents 52 is not needed prior to processing (i.e. the incubation time provided by the processing lanes 28 and 30 is sufficient for diagnostically testing the samples 22 in the processing lanes 28 and 30 without needing the additional incubation time provided by the pre-treatment lane 32), the at least one sample pipettor 44 pipettes the samples 22 from the sample storage zone 14 of
Subsequently, the at least one reagent pipettor 46 pipettes the reagents 52 from the reagent storage zone 16 of
Next, the primary processing lanes 28 and 30 continue to incrementally move, after the twenty-four second delay, to location 57. At location 57, the samples 22 and reagents 52 contained within the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 are mixed together with mixing module 148. It is noted that the mixing module 148 in
Subsequently, the incubated mixed samples 22 and reagents 52 within the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 38 are moved incrementally, with the twenty-four second delay at each location, from location 146 to locations 150, 152, and 154. At locations 150, 152, and 154, the incubated mixed samples 22 and reagents 52 within the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 are washed with washing module 156. During the washing, unbound materials of the reagents 52 are washed away from the samples 22. The washing module 156 comprises at least one actuated magnet and at least one washing pipette which allows the washing module 156 to selectively actuate the magnet and use the at least one washing pipette to wash only the selected incubated samples 22 and reagents 52 within the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30. In such manner, the non-selected incubated samples 22 and reagents 52 within the reaction vessels 20 can pass by without washing. It is noted that, in the embodiment of
Next, the washed samples 22 in the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 are moved incrementally, with the twenty-four second delay at each location, from location 154 to location 155 and then to location 156. At location 156, a conjugate dispensing module 158 dispenses conjugate into the samples 22 in the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30. It is noted that, in the embodiment of
After another twenty-four second delay, the mixed samples 22 with the dispensed conjugate in the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 incrementally move, after the twenty-four second delay at each location, to each of locations 164-184 (stopping at every location between location 164 and location 184 i.e. 164, 166, 168, . . . 184) during which time-period the mixed samples 22 with the dispensed conjugate in the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 incubate. When the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 reach location 184 and undergo the twenty-four second delay at that location, the mixed samples 22 with the dispensed conjugate in the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 will have incubated for four minutes due to the forty-five twenty-four second incremental delays. During this incubation period, the conjugate binds with any immune complex bound to the microparticles. In other embodiments, the number of incubation locations and delays may vary.
Next, the incubated samples 22 in the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 incrementally move, after the twenty-four second delay at each location, to each of locations 186, 188, and 190. Another washing module 192 at locations 186, 188, and 190 washes away unbound conjugate from the incubated samples 22.
Subsequently, the washed samples 22 in the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 incrementally move through location 192 to location 194 undergoing the twenty-four second delay at each location. At location 194, a pre-trigger dispensing and mixing module 196 dispenses pre-trigger solution into the washed samples 22 in the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 and then mixes the combination. It is noted that the pre-trigger dispensing and mixing module 196 is not connected to the pre-treatment lane 32, in the embodiment of
Next, the mixed samples 22 containing the pre-trigger solution in the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 incrementally move through locations 196 and 198 to location 200 undergoing the twenty-four second delay at each location. At location 200, a trigger dispensing and reading module 202, which in part comprises a diagnostic module, dispenses a trigger solution into the samples 22 mixed with the pre-trigger solution in the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 and then takes a reading. The diagnostic module is preferably an optic diagnostic testing module which takes an optical reading to determine a measurement, a property, a trait, or condition of the samples 22 based on the optical reading. In other embodiments, varying diagnostic modules, other than optical diagnostic testing modules, may be utilized to determine a measurement, a property, a trait, or a condition of the samples 22. It is noted that the trigger dispensing and reading 202 is not connected to the pre-treatment lane 32.
Then, the read samples 22 in the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 incrementally move through locations 202-214 to location 216 undergoing the twenty-four second delay at each location. At location 216, a liquid waste aspiration module 218 aspirates liquid waste, comprising the read samples 22, from the reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30. At location 216, the liquid waste aspiration module 218 further aspirates liquid waste, to the extent there is any if a pre-treatment was run, from the reaction vessels 20 held in the slots 42 of the pre-treatment lane 32.
The empty reaction vessels 20 held in the slots 42 of the processing lanes 28 and 30 and held in the slots 42 of the pre-treatment lane 32 then incrementally move through locations 219-221 to location 222 undergoing the twenty-four second delay at each location. At location 222, which is curved downward, the empty reaction vessels 20 fall out of the slots 42 of the processing lanes 28 and 30 and out of the slots 42 of the pre-treatment lane 32 into a reaction vessel disposal module 224 which disposes of the empty reaction vessels 20.
In other embodiments, the diagnostic analyzer system 10 may vary. For instance, one or more linear tracks 24 may comprise one or more varying pre-treatment lanes 32, one or more varying processing lanes 30 and 32, one or more varying slots 42, or one or more varying modules 48 having different functions. Moreover, the delay duration may vary as the one or more linear tracks 24 increment.
In step 306, the samples in the reaction vessels of the pre-treatment lane may be pre-treated without diagnostically testing them. Step 306 may further comprise adding reagents to the samples held in the slots of the reaction vessels of the pre-treatment lane with at least one reagent pipettor when the linear track is disposed in one position. The at least one reagent pipettor may be dedicated to the pre-treatment lane. Step 306 may further comprise subsequently moving the linear track into advanced positions thereby incubating the samples, with the added reagents, in the reaction vessels held in the slots of the pre-treatment lane as the linear track moves. Step 306 may further comprise one or more additional reagent pipettors dedicated to the at least one parallel processing lane pipetting reagents into the samples held in the slots of the reaction vessels of the at least one parallel processing lane while the pre-treatment is occurring in the pre-treatment lane.
In step 308, the pre-treated samples may be pipetted from the reaction vessels in the slots of the pre-treatment lane to the reaction vessels in the slots of the at least one parallel processing lane. In step 310, a plurality of modules connected to the at least one parallel processing lane, but not connected to the pre-treatment lane, may be used for one or more functions on the samples in the reaction vessels held in the slots of the at least one parallel processing lane. The plurality of modules may not be used on the samples in the reaction vessels held in the slots of the pre-treatment lane. The plurality of modules may comprise a washing module, a conjugate dispensing module, a mixing module, a pre-trigger dispensing and mixing module, and a trigger dispensing module. In other embodiments, the plurality of modules may vary. Step 310 may further comprise washing some of the reaction vessels held by the slots of the at least one parallel processing lane by actuating at least one magnet and by using at least one washing pipette of the washing module. Step 310 may further comprise selectively not-washing other of the reaction vessels held by the slots of the at least one parallel processing lane by not actuating the at least one magnet and by not using the at least one washing pipette of the washing module.
In step 312, the pipetted pre-treated samples in the reaction vessels held in the slots of the at least one parallel processing lane may be diagnostically tested. Step 312 may further comprise testing the pipetted pre-treated samples in the reaction vessels held in the slots of the at least one parallel processing lane with an optical diagnostic module. In other embodiments, varying diagnostic modules may be used. In step 314, liquid waste may be aspirated from both the reaction vessels held in the slots of the pre-treatment lane and from the reaction vessels held in the slots of the at least one parallel processing lane using a liquid waste aspiration device. In step 316, the reaction vessels held in the slots of the pre-treatment lane and the reaction vessels held in the slots of the at least one parallel processing lane may be disposed of using a reaction vessel disposal device. In other embodiments, one or more steps of the method may be not-followed, may be modified in substance or chronology, or one or more additional steps may be added.
One or more embodiments of the disclosure may reduce one or more issues of one or more of the existing diagnostic analyzers. For instance, the linear path of the track creates a reliable and durable process path with a distinct beginning and end. This linear path allows for a better fit of the rectangular reaction vessels to prevent them from being scraped or caught on edges of the track. Two parallel processing lanes on each belt allows for increased throughput from parallel processing. The pre-treatment lane allows the throughput to be maintained with as much as half the tests needing one pre-treatment cycle. The assembly is conductive to minimize problems with static electricity. The pre-treatment lanes are connected to dedicated sample pipettors for transferring the pre-treated samples to the parallel processing lanes thereby avoiding interference with the parallel processing lane pipettors and further increasing through-put. The parallel processing lanes are connected to various modules for doing a variety of functions on the blood samples disposed within the reaction vessels carried by the parallel processing lanes. The various modules are not connected to the pre-treatment lane which avoids interference with the pre-treatment while allowing simultaneous diagnostic processing. The use of a washing zone actuated magnet with independently indexing washing pipettes allows samples to go directly through the wash zone, instead of having to go on a separate bypass path, without being washed. Common waste modules are utilized for both of the processing lanes and the pre-treatment lane in order to efficiently dispose of liquid waste and used reaction vessels. All of these improvements work to increase through-put and reduce space and cost of the diagnostic analyzer system.
The Abstract is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. Furthermore, it is to be understood that the disclosure is defined by the appended claims. Accordingly, the disclosure is not to be restricted except in light of the appended claims and their equivalents.
This application claims benefit of priority to U.S. provisional application No. 61/790,599, filed on Mar. 15, 2013, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2725971 | Clark-Riede | Dec 1955 | A |
2770352 | Moller | Nov 1956 | A |
2807350 | Black, Jr. | Sep 1957 | A |
2891668 | Hunt | Jun 1959 | A |
3143201 | Wyle | Aug 1964 | A |
3350946 | Isreeli | Nov 1967 | A |
3432271 | Wasilewski | Mar 1969 | A |
3481709 | Slone | Dec 1969 | A |
3511613 | Jones | May 1970 | A |
3532469 | Vicario | Oct 1970 | A |
3536449 | Astle | Oct 1970 | A |
3622279 | Moran | Nov 1971 | A |
3623515 | Gilson | Nov 1971 | A |
3635394 | Natelson | Jan 1972 | A |
3644095 | Bechtler | Feb 1972 | A |
3660638 | Oberli | May 1972 | A |
3687632 | Natelson | Aug 1972 | A |
3716338 | Moran | Feb 1973 | A |
3722790 | Natelson | Mar 1973 | A |
3723066 | Moran | Mar 1973 | A |
3728079 | Moran | Apr 1973 | A |
3728080 | Moran | Apr 1973 | A |
3762879 | Moran | Oct 1973 | A |
3785773 | Rohrbaugh | Jan 1974 | A |
3825410 | Bagshawe | Jul 1974 | A |
3826622 | Natelson | Jul 1974 | A |
3841838 | Natelson | Oct 1974 | A |
3882619 | Durand | May 1975 | A |
3888629 | Bagshawe | Jun 1975 | A |
3897216 | Jones | Jul 1975 | A |
3932131 | Rolfo-Fontana | Jan 1976 | A |
3985508 | Williams | Oct 1976 | A |
3994594 | Sandrock | Nov 1976 | A |
4039288 | Moran | Aug 1977 | A |
4055396 | Meyer | Oct 1977 | A |
4140018 | Maldarelli | Feb 1979 | A |
4158545 | Yamashita et al. | Jun 1979 | A |
4168955 | Allington | Sep 1979 | A |
4190420 | Covington | Feb 1980 | A |
4244459 | Garrett | Jan 1981 | A |
4251159 | White | Feb 1981 | A |
4260581 | Sakurada | Apr 1981 | A |
4278437 | Haggar | Jul 1981 | A |
4315891 | Sakurada | Feb 1982 | A |
4363781 | Akamatsu | Dec 1982 | A |
4363782 | Yamashita | Dec 1982 | A |
4366119 | Takeuchi | Dec 1982 | A |
4413534 | Tomoff | Nov 1983 | A |
4459864 | Cirincione | Jul 1984 | A |
4495149 | Iwata | Jan 1985 | A |
4527438 | Fosslien | Jul 1985 | A |
4537231 | Hasskamp | Aug 1985 | A |
4600120 | Sabo | Jul 1986 | A |
4609017 | Coulter | Sep 1986 | A |
4623008 | Shibata | Nov 1986 | A |
4634575 | Kawakami | Jan 1987 | A |
4664885 | Minekane et al. | May 1987 | A |
4678752 | Thorne | Jul 1987 | A |
4692308 | Riley et al. | Sep 1987 | A |
4694951 | Gibbemeyer | Sep 1987 | A |
4713219 | Gerken | Dec 1987 | A |
4718319 | Bajohr | Jan 1988 | A |
4719087 | Hanaway | Jan 1988 | A |
4720463 | Farber | Jan 1988 | A |
4731225 | Wakatake | Mar 1988 | A |
4751186 | Baisch | Jun 1988 | A |
4797258 | Mochida | Jan 1989 | A |
4815625 | Filhol | Mar 1989 | A |
4818883 | Anderson | Apr 1989 | A |
4853188 | Toya | Aug 1989 | A |
4855110 | Marker, Jr. | Aug 1989 | A |
4861553 | Mawhirt | Aug 1989 | A |
4861554 | Sakuma | Aug 1989 | A |
4900513 | Barker | Feb 1990 | A |
4931256 | Mack et al. | Jun 1990 | A |
4935274 | DeBenedictis | Jun 1990 | A |
4948564 | Root | Aug 1990 | A |
4970053 | Fechtner | Nov 1990 | A |
5005721 | Jordan | Apr 1991 | A |
5008082 | Shaw | Apr 1991 | A |
5009942 | Benin | Apr 1991 | A |
5035861 | Grandone | Jul 1991 | A |
5035866 | Wannlund | Jul 1991 | A |
5055263 | Meltzer | Oct 1991 | A |
5075082 | Fechtner | Dec 1991 | A |
5098661 | Anderson | Mar 1992 | A |
5112574 | Horton | May 1992 | A |
5125680 | Bejean | Jun 1992 | A |
5128104 | Murphy | Jul 1992 | A |
5145646 | Tyranski | Sep 1992 | A |
5158895 | Ashihara | Oct 1992 | A |
5173741 | Wakatake | Dec 1992 | A |
5178834 | Kagayama et al. | Jan 1993 | A |
5242659 | Wurschum | Sep 1993 | A |
5244633 | Jakubowicz | Sep 1993 | A |
5250440 | Kelln | Oct 1993 | A |
5265655 | Hirsch | Nov 1993 | A |
5270011 | Altherr | Dec 1993 | A |
5271899 | Carbonari | Dec 1993 | A |
5277871 | Fujii | Jan 1994 | A |
5290708 | Ashihara | Mar 1994 | A |
5306510 | Meltzer | Apr 1994 | A |
5316726 | Babson | May 1994 | A |
5322668 | Tomasso | Jun 1994 | A |
5332549 | MacIndoe, Jr. | Jul 1994 | A |
5364592 | Lewis | Nov 1994 | A |
5368820 | Lautenschlager | Nov 1994 | A |
5374395 | Robinson | Dec 1994 | A |
5380487 | Choperena | Jan 1995 | A |
5380488 | Wakatake | Jan 1995 | A |
5422075 | Aoki | Jun 1995 | A |
5424036 | Ushikubo | Jun 1995 | A |
5445794 | Wihlborg | Aug 1995 | A |
5456884 | Lewis | Oct 1995 | A |
5482839 | Ashihara et al. | Jan 1996 | A |
5482863 | Knobel | Jan 1996 | A |
5507410 | Clark | Apr 1996 | A |
5511690 | Calhoun | Apr 1996 | A |
5518688 | Gianino | May 1996 | A |
5544778 | Goncalves | Aug 1996 | A |
5554536 | Rising | Sep 1996 | A |
5567386 | Markin | Oct 1996 | A |
5578272 | Koch | Nov 1996 | A |
5580524 | Forrest | Dec 1996 | A |
5582796 | Carey | Dec 1996 | A |
5605665 | Clark | Feb 1997 | A |
5623415 | O'Bryan et al. | Apr 1997 | A |
5628428 | Calhoun | May 1997 | A |
5632396 | Burns | May 1997 | A |
5637275 | Carey | Jun 1997 | A |
5645800 | Masterson | Jul 1997 | A |
5650125 | Bosanquet | Jul 1997 | A |
5653940 | Carey | Aug 1997 | A |
5658799 | Choperena | Aug 1997 | A |
5670117 | Erb | Sep 1997 | A |
5672317 | Buhler | Sep 1997 | A |
5679948 | Carey | Oct 1997 | A |
5683659 | Hovatter | Nov 1997 | A |
5693292 | Choperena | Dec 1997 | A |
5700429 | Buhler | Dec 1997 | A |
5720377 | Lapeus et al. | Feb 1998 | A |
5720406 | Fassbind | Feb 1998 | A |
5736101 | Gianino | Apr 1998 | A |
5741708 | Carey | Apr 1998 | A |
5753186 | Hanley | May 1998 | A |
5766549 | Gao et al. | Jun 1998 | A |
5772962 | Uchida et al. | Jun 1998 | A |
5788928 | Carey | Aug 1998 | A |
5800784 | Horn | Sep 1998 | A |
5814276 | Riggs | Sep 1998 | A |
5846491 | Choperena | Dec 1998 | A |
5849247 | Uzan | Dec 1998 | A |
5863506 | Farren | Jan 1999 | A |
5876670 | Mitsumaki et al. | Mar 1999 | A |
5885529 | Babson | Mar 1999 | A |
5885530 | Babson | Mar 1999 | A |
5888825 | Carr et al. | Mar 1999 | A |
5902549 | Mimura et al. | May 1999 | A |
5922289 | Wong | Jul 1999 | A |
5931828 | Durkee | Aug 1999 | A |
5945071 | Ekiriwang | Aug 1999 | A |
5952218 | Lee | Sep 1999 | A |
5957264 | Carey | Sep 1999 | A |
5959221 | Boyd | Sep 1999 | A |
RE36341 | Howell | Oct 1999 | E |
5963368 | Domanik | Oct 1999 | A |
5966309 | O'Bryan et al. | Oct 1999 | A |
5968453 | Shugart | Oct 1999 | A |
5972295 | Hanawa et al. | Oct 1999 | A |
5985214 | Beckey | Nov 1999 | A |
5985218 | Goodale | Nov 1999 | A |
5988236 | Fawcett | Nov 1999 | A |
6019945 | Ohishi et al. | Feb 2000 | A |
6024204 | van Dyke, Jr. | Feb 2000 | A |
6030582 | Levy | Feb 2000 | A |
6056106 | Van Dyke, Jr. | May 2000 | A |
6063340 | Lewis et al. | May 2000 | A |
6063341 | Fassbind | May 2000 | A |
6074615 | Lewis | Jun 2000 | A |
6074617 | DeYoung et al. | Jun 2000 | A |
6081326 | Gelin | Jun 2000 | A |
6117391 | Bakonyi | Sep 2000 | A |
6117392 | Hanawa | Sep 2000 | A |
6117683 | Kodama | Sep 2000 | A |
6136273 | Banar | Oct 2000 | A |
6146882 | Uematsu | Nov 2000 | A |
6149872 | Mack et al. | Nov 2000 | A |
6202829 | van Dyke, Jr. et al. | Mar 2001 | B1 |
6204764 | Maloney | Mar 2001 | B1 |
6220451 | Hoffmann | Apr 2001 | B1 |
6254826 | Acosta | Jul 2001 | B1 |
6265225 | Otto | Jul 2001 | B1 |
6274374 | Astle | Aug 2001 | B1 |
6299567 | Forrest et al. | Oct 2001 | B1 |
6325129 | Wright | Dec 2001 | B1 |
6335166 | Ammann | Jan 2002 | B1 |
6337053 | Tajima | Jan 2002 | B1 |
6355488 | Rousseau | Mar 2002 | B1 |
6358472 | DeYoung | Mar 2002 | B1 |
6361744 | Levy | Mar 2002 | B1 |
6368561 | Rutishauser | Apr 2002 | B1 |
6368872 | Juranas | Apr 2002 | B1 |
6374989 | van Dyke, Jr. | Apr 2002 | B1 |
6379625 | Zuk, Jr. | Apr 2002 | B1 |
6403035 | Caratsch | Jun 2002 | B1 |
6413780 | Bach | Jul 2002 | B1 |
6436349 | Carey et al. | Aug 2002 | B1 |
6440368 | Cohen | Aug 2002 | B1 |
6440371 | Dumitrescu | Aug 2002 | B1 |
6458324 | Schinzel | Oct 2002 | B1 |
6461570 | Ishihara | Oct 2002 | B2 |
6468800 | Stylli | Oct 2002 | B1 |
6472218 | Stylli | Oct 2002 | B1 |
6489169 | Cohen | Dec 2002 | B1 |
6498037 | Carey et al. | Dec 2002 | B1 |
6511634 | Bradshaw et al. | Jan 2003 | B1 |
6517780 | Cortelazzo | Feb 2003 | B1 |
6517782 | Horner | Feb 2003 | B1 |
6521183 | Burri | Feb 2003 | B1 |
6555062 | Lewis et al. | Apr 2003 | B1 |
6588625 | Luoma, II et al. | Jul 2003 | B2 |
6599476 | Watson | Jul 2003 | B1 |
6599749 | Kodama et al. | Jul 2003 | B1 |
6605213 | Ammann | Aug 2003 | B1 |
6673595 | Barbera-Guillem | Jan 2004 | B2 |
6677857 | Bara et al. | Jan 2004 | B2 |
6678577 | Stylli | Jan 2004 | B1 |
6685884 | Stylli | Feb 2004 | B2 |
6696298 | Cook | Feb 2004 | B2 |
6709634 | Okada | Mar 2004 | B1 |
6733728 | Mimura | May 2004 | B1 |
6746648 | Mattila | Jun 2004 | B1 |
6752965 | Levy | Jun 2004 | B2 |
6752967 | Farina | Jun 2004 | B2 |
6764649 | Ammann | Jul 2004 | B2 |
6776964 | Wijnschenk | Aug 2004 | B1 |
6790412 | Willenbring | Sep 2004 | B2 |
6790413 | Ngo | Sep 2004 | B2 |
6793888 | Qureshi | Sep 2004 | B2 |
6799696 | Okada | Oct 2004 | B2 |
6808304 | Gebrian | Oct 2004 | B2 |
6818060 | Stewart | Nov 2004 | B2 |
6827902 | Kuriyama | Dec 2004 | B1 |
6829954 | Katagi | Dec 2004 | B2 |
6843357 | Bybee | Jan 2005 | B2 |
6843962 | Haslam | Jan 2005 | B2 |
6846456 | Acosta | Jan 2005 | B2 |
6852283 | Acosta | Feb 2005 | B2 |
6878343 | Sklar | Apr 2005 | B2 |
6881380 | Mootz | Apr 2005 | B1 |
6890485 | Stylli | May 2005 | B1 |
6890742 | Ammann | May 2005 | B2 |
6893611 | Cohen | May 2005 | B1 |
6896120 | Barry | May 2005 | B2 |
6896849 | Reed | May 2005 | B2 |
6899850 | Haywood | May 2005 | B2 |
6939513 | Berray | Sep 2005 | B2 |
6948389 | Brinker | Sep 2005 | B2 |
6951545 | Smith | Oct 2005 | B2 |
6977722 | Wohlstadter | Dec 2005 | B2 |
6998094 | Haslam | Feb 2006 | B2 |
6999847 | Barry et al. | Feb 2006 | B2 |
7011792 | Mimura | Mar 2006 | B2 |
7028831 | Veiner | Apr 2006 | B2 |
7029922 | Miller | Apr 2006 | B2 |
7033820 | Ammann | Apr 2006 | B2 |
7067323 | Veale et al. | Jun 2006 | B2 |
7070053 | Abrams | Jul 2006 | B1 |
7091864 | Veitch et al. | Aug 2006 | B2 |
7112303 | Itoh | Sep 2006 | B2 |
7118892 | Ammann | Oct 2006 | B2 |
7125722 | Safar | Oct 2006 | B2 |
7135145 | Ammann | Nov 2006 | B2 |
7141213 | Pang | Nov 2006 | B1 |
7168390 | Gudmundsson | Jan 2007 | B2 |
7168391 | Gudmundsson | Jan 2007 | B2 |
7169356 | Gebrian | Jan 2007 | B2 |
7182912 | Carey | Feb 2007 | B2 |
7187286 | Morris et al. | Mar 2007 | B2 |
7199712 | Tafas | Apr 2007 | B2 |
7219800 | Bülow | May 2007 | B2 |
7220385 | Blecka | May 2007 | B2 |
7233838 | Barry | Jun 2007 | B2 |
7250303 | Jakubowicz | Jul 2007 | B2 |
7264111 | Veiner | Sep 2007 | B2 |
7267795 | Ammann | Sep 2007 | B2 |
7270229 | Perazzo | Sep 2007 | B2 |
7291309 | Watson | Nov 2007 | B2 |
7294312 | Green | Nov 2007 | B2 |
7299981 | Hickle | Nov 2007 | B2 |
7300628 | Nogawa | Nov 2007 | B2 |
7306767 | Mathus | Dec 2007 | B2 |
7309469 | Anderson | Dec 2007 | B2 |
7331474 | Veiner | Feb 2008 | B2 |
7338635 | Miyake | Mar 2008 | B2 |
7338803 | Mizzer | Mar 2008 | B2 |
7361305 | Mimura | Apr 2008 | B2 |
7380654 | Barry | Jun 2008 | B2 |
7382258 | Oldham et al. | Jun 2008 | B2 |
7384600 | Burns | Jun 2008 | B2 |
7396509 | Burns | Jul 2008 | B2 |
7400983 | Feingold | Jul 2008 | B2 |
7402282 | LaCourt | Jul 2008 | B2 |
7407627 | Rosenberg | Aug 2008 | B1 |
7411508 | Harazin et al. | Aug 2008 | B2 |
7448487 | Koike | Nov 2008 | B2 |
7458483 | Luoma, II | Dec 2008 | B2 |
7482143 | Ammann | Jan 2009 | B2 |
7488453 | Takahashi | Feb 2009 | B2 |
7491364 | Mattila | Feb 2009 | B2 |
7501094 | Bysouth | Mar 2009 | B2 |
7504067 | Itoh | Mar 2009 | B2 |
7510683 | Itoh | Mar 2009 | B2 |
7513127 | Owen | Apr 2009 | B2 |
7524652 | Ammann | Apr 2009 | B2 |
7526968 | Lisec | May 2009 | B2 |
7560255 | Ammann | Jul 2009 | B2 |
7560256 | Ammann | Jul 2009 | B2 |
7572638 | Pressman | Aug 2009 | B2 |
7625748 | Ogura | Dec 2009 | B2 |
7628954 | Gomm | Dec 2009 | B2 |
7638337 | Ammann | Dec 2009 | B2 |
7639139 | Tafas | Dec 2009 | B2 |
7641855 | Farina | Jan 2010 | B2 |
7662339 | Mattila | Feb 2010 | B2 |
7663487 | Morris et al. | Feb 2010 | B2 |
7666602 | Ammann | Feb 2010 | B2 |
7666681 | Ammann | Feb 2010 | B2 |
7667603 | Bolander | Feb 2010 | B2 |
7670553 | Babson | Mar 2010 | B2 |
7687034 | Dumitrescu | Mar 2010 | B2 |
7688207 | Fritchie | Mar 2010 | B2 |
7692530 | Turner et al. | Apr 2010 | B2 |
7700043 | Mimura | Apr 2010 | B2 |
7718072 | Safar | May 2010 | B2 |
7731898 | Burkhardt | Jun 2010 | B2 |
7754149 | Sugiyama | Jul 2010 | B2 |
7785299 | Crawford | Aug 2010 | B2 |
7790108 | Müller | Sep 2010 | B2 |
7818132 | Pritchard | Oct 2010 | B2 |
7842504 | Devlin, Sr. | Nov 2010 | B2 |
7846384 | Watson | Dec 2010 | B2 |
7850912 | Favuzzi | Dec 2010 | B2 |
7850914 | Veiner et al. | Dec 2010 | B2 |
7854892 | Veiner et al. | Dec 2010 | B2 |
7855084 | Jakubowicz | Dec 2010 | B2 |
7858032 | Le Comte | Dec 2010 | B2 |
7858033 | Itoh | Dec 2010 | B2 |
7866464 | Miyatani et al. | Jan 2011 | B2 |
7867768 | Ryan | Jan 2011 | B2 |
7875245 | Favuzzi | Jan 2011 | B2 |
7879290 | Noda | Feb 2011 | B2 |
7880617 | Morris et al. | Feb 2011 | B2 |
7901624 | Hansen | Mar 2011 | B2 |
7914737 | Baumann | Mar 2011 | B2 |
7922986 | Byrnard | Apr 2011 | B2 |
7931861 | Kitagawa | Apr 2011 | B2 |
7931879 | D'Amore | Apr 2011 | B2 |
7932826 | Fritchie | Apr 2011 | B2 |
7939020 | Nogawa | May 2011 | B2 |
7943100 | Rousseau | May 2011 | B2 |
7947512 | Tajima | May 2011 | B2 |
7975852 | Charpentier | Jul 2011 | B2 |
7976794 | Trump | Jul 2011 | B2 |
7985375 | Edens | Jul 2011 | B2 |
7998409 | Veiner | Aug 2011 | B2 |
8017093 | Mattila | Sep 2011 | B2 |
8017094 | Meyer | Sep 2011 | B2 |
8029746 | Yu | Oct 2011 | B2 |
8035485 | Fritchie | Oct 2011 | B2 |
8038941 | Devlin | Oct 2011 | B2 |
8012419 | Eby | Nov 2011 | B2 |
8049623 | Morris et al. | Nov 2011 | B2 |
8080204 | Ryan | Dec 2011 | B2 |
8211301 | Safar | Jul 2012 | B2 |
8252232 | Neeper | Aug 2012 | B2 |
8361387 | Schacher | Jan 2013 | B2 |
8361396 | Parker | Jan 2013 | B2 |
8435738 | Holmes | May 2013 | B2 |
8492155 | Bunce | Jul 2013 | B2 |
20010019826 | Ammann | Sep 2001 | A1 |
20010041336 | Anderson et al. | Nov 2001 | A1 |
20020028489 | Ammann | Mar 2002 | A1 |
20020085959 | Carey | Jul 2002 | A1 |
20020098117 | Ammann | Jul 2002 | A1 |
20020127727 | Bach | Sep 2002 | A1 |
20020137194 | Ammann | Sep 2002 | A1 |
20020137197 | Ammann | Sep 2002 | A1 |
20020164807 | Itaya | Nov 2002 | A1 |
20030027206 | Ammann | Feb 2003 | A1 |
20030047418 | Okada | Mar 2003 | A1 |
20030049170 | Tamura et al. | Mar 2003 | A1 |
20030054542 | Burns | Mar 2003 | A1 |
20030155321 | Bauer et al. | Aug 2003 | A1 |
20030194349 | Carey | Oct 2003 | A1 |
20030215357 | Leeker | Nov 2003 | A1 |
20030224524 | Arai et al. | Dec 2003 | A1 |
20040022682 | Itoh | Feb 2004 | A1 |
20040035816 | Okiyama | Feb 2004 | A1 |
20040042339 | Gebrian et al. | Mar 2004 | A1 |
20040094385 | Bybee | May 2004 | A1 |
20040096362 | Barry et al. | May 2004 | A1 |
20040115796 | Burns | Jun 2004 | A1 |
20040136869 | Itoh | Jul 2004 | A1 |
20040141882 | Mimura | Jul 2004 | A1 |
20040163931 | Barry et al. | Aug 2004 | A1 |
20040266015 | Favuzzi | Dec 2004 | A1 |
20050023109 | Barry | Feb 2005 | A1 |
20050042138 | Ueda | Feb 2005 | A1 |
20050084974 | Veale | Apr 2005 | A1 |
20050130198 | Ammann | Jun 2005 | A1 |
20050194237 | Veiner | Sep 2005 | A1 |
20050194333 | Veiner | Sep 2005 | A1 |
20050196320 | Veiner et al. | Sep 2005 | A1 |
20050233370 | Ammann | Oct 2005 | A1 |
20050239127 | Ammann | Oct 2005 | A1 |
20050258018 | Barry | Nov 2005 | A1 |
20050266489 | Ammann | Dec 2005 | A1 |
20050266570 | Carey | Dec 2005 | A1 |
20060003373 | Ammann | Jan 2006 | A1 |
20060013729 | Carey | Jan 2006 | A1 |
20060110288 | Mimura | May 2006 | A1 |
20060177346 | Veiner | Aug 2006 | A1 |
20060190185 | Ford et al. | Aug 2006 | A1 |
20060216199 | Koike | Sep 2006 | A1 |
20060258010 | Safar | Nov 2006 | A1 |
20060275906 | Devlin | Dec 2006 | A1 |
20070077172 | Sugiyama | Apr 2007 | A1 |
20070207056 | Veiner | Sep 2007 | A1 |
20070225857 | Barry | Sep 2007 | A1 |
20070255756 | Satomura et al. | Nov 2007 | A1 |
20080008624 | Veiner | Jan 2008 | A1 |
20080020467 | Barnes | Jan 2008 | A1 |
20080044260 | Miyatani | Feb 2008 | A1 |
20080063563 | Watari | Mar 2008 | A1 |
20080063573 | Ammann | Mar 2008 | A1 |
20080069730 | Itoh | Mar 2008 | A1 |
20080089818 | Ammann | Apr 2008 | A1 |
20080096214 | Ammann | Apr 2008 | A1 |
20080102527 | Ammann | May 2008 | A1 |
20080181817 | Mimura | Jul 2008 | A1 |
20080190735 | Luoma | Aug 2008 | A1 |
20080212400 | Ammann | Sep 2008 | A1 |
20080226498 | Stylli | Sep 2008 | A1 |
20080226509 | Sattler | Sep 2008 | A1 |
20080241837 | Ammann | Oct 2008 | A1 |
20080268528 | Ammann | Oct 2008 | A1 |
20080299007 | Noguchi | Dec 2008 | A1 |
20090029352 | Ammann | Jan 2009 | A1 |
20090029871 | Ammann | Jan 2009 | A1 |
20090029877 | Ammann | Jan 2009 | A1 |
20090058617 | Wu | Mar 2009 | A1 |
20090074616 | Sento | Mar 2009 | A1 |
20090130749 | Ammann | May 2009 | A1 |
20090134978 | Imai | May 2009 | A1 |
20090155123 | Williams | Jun 2009 | A1 |
20090160654 | Yang | Jun 2009 | A1 |
20090162247 | Tokieda | Jun 2009 | A1 |
20090325274 | Hamada | Dec 2009 | A1 |
20100001854 | Kojima | Jan 2010 | A1 |
20100001876 | Sasaki | Jan 2010 | A1 |
20100007501 | Yang | Jan 2010 | A1 |
20100013595 | Torre-Bueno | Jan 2010 | A1 |
20100021993 | Wang | Jan 2010 | A1 |
20100028124 | Lackner | Feb 2010 | A1 |
20100034701 | Pedrazzini | Feb 2010 | A1 |
20100075430 | Hofstadler | Mar 2010 | A1 |
20100112703 | Farrar | Mar 2010 | A1 |
20100093097 | Kawamura | Apr 2010 | A1 |
20100097231 | Elsenhans | Apr 2010 | A1 |
20100122586 | Misu | May 2010 | A1 |
20100124518 | Koike | May 2010 | A1 |
20100166605 | Hamada | Jul 2010 | A1 |
20100166615 | Mattila | Jul 2010 | A1 |
20100188244 | Sattler et al. | Jul 2010 | A1 |
20100191382 | Samuhel | Jul 2010 | A1 |
20100248213 | Feiglin | Sep 2010 | A1 |
20100282003 | Hamada | Nov 2010 | A1 |
20100300831 | Pedrazzini | Dec 2010 | A1 |
20100314216 | Lanfranchi | Dec 2010 | A1 |
20110001609 | Oldham et al. | Jan 2011 | A1 |
20110027150 | Tuffet | Feb 2011 | A1 |
20110064543 | Nuotio | Mar 2011 | A1 |
20110076193 | Kitagawa | Mar 2011 | A1 |
20110076194 | Kitagawa | Mar 2011 | A1 |
20110076780 | Yamato | Mar 2011 | A1 |
20110090066 | Yamaguchi et al. | Apr 2011 | A1 |
20110091364 | Voit | Apr 2011 | A1 |
20110095864 | Trueeb et al. | Apr 2011 | A1 |
20110123416 | Giraud | May 2011 | A1 |
20110143947 | Chamberlin | Jun 2011 | A1 |
20110158850 | Pedrazzini | Jun 2011 | A1 |
20110189051 | Gelin | Aug 2011 | A1 |
20110197661 | Riggenmann | Aug 2011 | A1 |
20110200500 | Feilders | Aug 2011 | A1 |
20110229374 | Tokunaga | Sep 2011 | A1 |
20110232372 | Tokunaga | Sep 2011 | A1 |
20110236259 | Mototsu | Sep 2011 | A1 |
20110243792 | Tatsutani | Oct 2011 | A1 |
20110256022 | Akutsu | Oct 2011 | A1 |
20120028847 | Indermuhle | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
2254017 | May 2000 | CA |
2497397 | Feb 2004 | CA |
2502656 | Feb 2004 | CA |
2693321 | Feb 2004 | CA |
102007031117 | Jan 2008 | DE |
102007012524 | Sep 2008 | DE |
0036566 | Sep 1984 | EP |
0564970 | Oct 1993 | EP |
0577343 | Jan 1994 | EP |
0622305 | Nov 1994 | EP |
0631816 | Jan 1995 | EP |
0651254 | May 1995 | EP |
0467284 | Jun 1995 | EP |
0692308 | Jan 1996 | EP |
0694334 | Jan 1996 | EP |
0866335 | Sep 1998 | EP |
0734963 | Nov 1998 | EP |
0884104 | Dec 1998 | EP |
0909584 | Apr 1999 | EP |
0920915 | Jun 1999 | EP |
0738541 | Jan 2002 | EP |
0757253 | Apr 2003 | EP |
1122181 | May 2003 | EP |
1546009 | Feb 2004 | EP |
1546736 | Feb 2004 | EP |
0968766 | Sep 2004 | EP |
1216754 | Nov 2004 | EP |
0977037 | Aug 2005 | EP |
1566216 | Aug 2005 | EP |
1424291 | Mar 2006 | EP |
1655071 | May 2006 | EP |
1452869 | Nov 2006 | EP |
1739406 | Jan 2007 | EP |
1741488 | Jan 2007 | EP |
1231472 | Jan 2008 | EP |
1550498 | Jul 2008 | EP |
1767949 | Oct 2008 | EP |
1832880 | Oct 2009 | EP |
1546680 | Mar 2011 | EP |
2074431 | Apr 2011 | EP |
2354841 | Apr 2001 | GB |
8026461 | Jan 1996 | JP |
09166599 | Jun 1997 | JP |
09304397 | Nov 1997 | JP |
2000019182 | Jan 2000 | JP |
2000162215 | Jun 2000 | JP |
2001253530 | Sep 2001 | JP |
2003083987 | Mar 2003 | JP |
2007527011 | Sep 2007 | JP |
2008073653 | Apr 2008 | JP |
2010085125 | Apr 2010 | JP |
9320441 | Oct 1993 | WO |
WO 9320441 | Oct 1993 | WO |
WO9409352 | Apr 1994 | WO |
WO9511083 | Apr 1995 | WO |
WO9621851 | Jul 1996 | WO |
WO9705492 | Feb 1997 | WO |
WO9716734 | May 1997 | WO |
WO9803264 | Jan 1998 | WO |
WO9809579 | Mar 1998 | WO |
WO9821594 | May 1998 | WO |
WO9858262 | Dec 1998 | WO |
WO9945360 | Sep 1999 | WO |
WO9951718 | Oct 1999 | WO |
WO9952634 | Oct 1999 | WO |
WO0029114 | May 2000 | WO |
WO0117682 | Mar 2001 | WO |
WO0245648 | Jun 2002 | WO |
WO03000420 | Jan 2003 | WO |
WO03020427 | Mar 2003 | WO |
WO2004013615 | Feb 2004 | WO |
WO2004013639 | Feb 2004 | WO |
WO2004013709 | Feb 2004 | WO |
WO2004013710 | Feb 2004 | WO |
WO2006021648 | Mar 2006 | WO |
WO2007134066 | Nov 2007 | WO |
WO2008113352 | Sep 2008 | WO |
WO2009012808 | Jan 2009 | WO |
WO2009024560 | Feb 2009 | WO |
WO2009115760 | Sep 2009 | WO |
WO2009144381 | Dec 2009 | WO |
WO2009149324 | Dec 2009 | WO |
WO2010132885 | Nov 2010 | WO |
WO2011139888 | Nov 2011 | WO |
WO2012057548 | May 2012 | WO |
Entry |
---|
International Search Report and Written Opinion, dated Aug. 11, 2014, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20140287523 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61790599 | Mar 2013 | US |