The present invention relates to linear piezoelectric ultrasound motors according to the preamble of patent claim 1. Such motors are intended as drive in various fine positioning apparatus, e.g. for adjusting optical lenses in miniaturized camera objectives, in microscopy tables, for positioning write-read heads in data storage devices and in others of such mechatronic apparatus.
Linear piezoelectric ultrasound motors are known from EP 0 450 919 A1, which operate according to the principle of excitation of a traveling wave in an elliptical resonator (a closed waveguide). The ultrasound oscillator in so constructed motors is made of a non-piezoelectric material. For exciting a traveling bending wave an electromechanical energy converter (piezoelectric element) is adhesively fixed to the resonator. To allow the excitation of a traveling wave in the resonator as effectively as possible it is necessary to provide a best possible acoustic connection between the resonator and the piezoelectric element with respect to the acoustic resistance. That is, the acoustic contact resistance between the piezoelectric element and the resonator must be low. This requires, for example, the use of hard adhesives. A large-area adhesive connection between the piezoelectric ceramics and the resonator material is not possible, however. Due to different thermal expansion coefficients of both materials the ceramic can break out while, in the functional operating mode of piezoelectric ultrasound motors, the adhesive layer becomes soft under the ultrasonic influence which leads to an increased acoustic resistance and, as a consequence, to increased power losses. The side of the resonator interacting with the rotor is provided with milled teeth or ribs serving the amplification of the tangential component of the bending wave. Such milled portions are not producible at low costs either.
Accordingly, the prior motors include constructively complicated ring oscillators and are not suited for miniaturization and cost-efficient mass production.
Moreover, linear ultrasound motors are known from U.S. Pat. No. 5,672,930, which utilize the excitation of a traveling ultrasonic wave in a rod oscillator (in an open waveguide). The disadvantage of such motors resides in the fact that it is practically impossible to excite a neatly traveling ultrasonic wave in an open waveguide because a symmetrical standing wave is excited in an open waveguide simultaneously with the excitation of a traveling wave, which negatively affects the effective functioning of the frictional contact of the motor. This results in a strong heating of the frictional contact and the ultrasound motor itself, respectively, as well as in a high noise level. Moreover, these motors need a high excitation voltage, are likewise expensive to manufacture and cannot be miniaturized.
The most obvious solution is represented by linear piezoelectric ultrasound motors according to DE 199 45 042 C2. With these ultrasound motors, a standing longitudinal wave as well as a bending wave are excited in the piezoelectric plate-like resonator at the same time. As a result of the interference of both waves the push element mounted on the resonator undergoes an elliptical movement, thereby transferring the movement to a mobile element which is pressed against the push element and supported by ball-bearings. However, the use of a relatively expensive ball-bearing in this construction is disadvantageous. The use of a slide bearing involves friction losses in the bearing comparable with the turning force developed by the actuator or transmitted through the frictional contact, respectively. The necessary use of ball bearings renders the motors more complicated, increases their construction space and their production costs. Furthermore, it is not possible to employ such motors for non-magnetic applications if steel ball bearings are used.
The invention is therefore based on the object to reduce the physical size of linear ultrasound motors and to increase their efficiency.
The solution to the object of the invention is achieved with the combination of features defined in patent claim 1.
The invention is based on a linear piezoelectric ultrasound motor having a linear sliding/frictional contact between the driven element and its holder, which allows the excitation of ultrasonic oscillations in the holder of the driven element, with the friction between the driven element and the holder being reduced.
In a linear piezoelectric ultrasound motor comprising an ultrasound oscillator embodied in the form of a piezoelectric plate or a cylinder part with acoustic oscillation generators and a friction element which frictionally interacts with the driven element and is disposed in a holder, the aforementioned holder is embodied in the form of at least one elastic clamp which embraces the driven element. This clamp is fixed to the ultrasound oscillator and is made of a sound-conducting material.
Due to the fact that the holder of the driven element is fixed to the ultrasound oscillator and is made of a sound-conducting material ultrasonic oscillations generated by the ultrasound oscillator are intensively co-excited in the holder and are passed therethrough. The presence of ultrasonic oscillations in the holder allows a reduction of the friction force between the driven element and the holder and, by this, of the use of linear ball bearings which would otherwise be required. This facilitates the construction, reduces the physical size and the production costs for the motor.
In various constructive embodiments of the motor the clamp may be made of a metal wire having a round cross-section or of a metal strip having a rectangular cross-section. This allows for a better matching of the acoustic resistance of the clamp to the ultrasound oscillator as well as an exact adjustment of the contact force of the driven element to the oscillator of the motor.
In other alternative motors the driven element can, moreover, be made in the form of a rectangular, triangular, round or half-round rod with a flat surface.
This allows the utilization of different production technologies of the driven element and, thus, the achievement of the necessary production precision for the respective application.
In another embodiment of the ultrasound motor according to the invention the driven element may be embodied as a stationary guide rail with respect to which the ultrasound oscillator with the holder fixed to the same is displaceable.
This extends the field of application of the inventive motor because the motor can be designed in the form of a carriage which is movable along a guide rail.
The invention will be explained in more detail below by means of exemplary embodiments and with reference to the figures.
In the figures:
The ultrasound motor according to the invention as illustrated in
According to various alternatives of the inventive motor one, two or more friction elements 6 can be disposed on the piezoelectric plate 4, which can be seen in
The oscillator 1 can be embodied as a cylinder shell part 31 with generators 5 mounted thereon, as well as with one or two friction elements 6, which is shown in
The acoustic oscillation generators 5 are comprised of an excitation electrode 11, a common electrode 12 and the piezoelectric ceramics of plate 4 placed therebetween.
The driven element 8 is mounted in the specific holder 13 which is embodied in the form of a clamp or bow embracing this element (see
The clamp 13 is made of a sound-conducting material, e.g. of a metal wire, a metal strip having a round or rectangular cross-section (
The driven element 8 can have the shape of a rod with the rectangular, triangular, round, half-round cross-section with a planar surface, which is shown in
The holder 13 is firmly attached at or on the surface of the oscillator plate 4. To this end, the ends 21 (
In yet another alternative embodiment of the motor (see
In another alternative construction of the motor an optical lens 27 is mounted on the driven element 8 (see
The ultrasound motor according to the invention as illustrated operates as follows.
When the switch 29 (
Points located on the surfaces of the electrodes 11, 12 oscillate with the same amplitudes as the points of the oscillator plate 4 located underneath. Thus, high-frequency oscillations also propagate in the holder 13 fixed to the electrodes 11, 12 (see
In the alternatives of the motor with two friction elements, two driven elements 8 and two holders (
Different embodiments of the driven elements can be employed in the motor according to the invention. Some exemplary embodiments are illustrated in
The embodiment of the oscillator 1 in the form of a cylinder shell part (
The embodiment of the driven element 8 in the form of a guide rail 25 allows the construction of the motor as a mobile slide, illustrated in
The use of the motor according to the invention in an objective (
A production of the holder 13, for example, of beryllium bronze and of the driven element 8 of aluminum oxide allows the construction of a non-magnetic linear motor.
Functional tests of the motor according to the invention were carried out on several prototypes. Thus, an ultrasound motor having a diameter of 0.5 mm was fabricated, with the oscillator 1 having geometrical dimensions of 18×8×3 mm3 and comprising a holder 13 made of beryllium bronze. As driven element 8 a rod made of hardened steel and having a diameter of 3 mm was used. A specifically developed excitation source 28 with an electric alternating voltage of 3.6 V was used for the excitation. The current drawn from the motor amounted to 0.15 mA. During the functional tests the motor demonstrated a functional period of 660000 movement cycles with a travel of 20 mm. According to an extrapolation the functional period would imply a lifetime of approximately 18 years.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 055 082 | Nov 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/003897 | 4/13/2005 | WO | 00 | 11/15/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/050759 | 5/18/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4630941 | Chainer et al. | Dec 1986 | A |
4672256 | Okuno et al. | Jun 1987 | A |
5532540 | Claeyssen et al. | Jul 1996 | A |
5780956 | Oliver et al. | Jul 1998 | A |
5877579 | Zumeris | Mar 1999 | A |
6188161 | Yoshida et al. | Feb 2001 | B1 |
6617759 | Zumeris et al. | Sep 2003 | B1 |
6765335 | Wischnewskiy | Jul 2004 | B2 |
6768245 | Mock et al. | Jul 2004 | B2 |
6774538 | Hata | Aug 2004 | B2 |
6979934 | Wischnewskiy | Dec 2005 | B1 |
7315108 | Okamoto et al. | Jan 2008 | B2 |
20080169727 | Yamamoto | Jul 2008 | A1 |
20090072665 | Adachi et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
0755054 | Jan 1997 | EP |
1267425 | Dec 2002 | EP |
03-027603 | Feb 1991 | JP |
10-80162 | Mar 1998 | JP |
10-80163 | Mar 1998 | JP |
WO0103282 | Jan 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20080211348 A1 | Sep 2008 | US |