The present invention generally relates to the art of vibrators and, more particularly, to a linear vibrator for generating tactile sensation.
Consumer products, such as mobile phones and portable multi-media players, generally include vibrators for generating tactile feedback. For example, a mobile phone has a vibrator for generating vibration while a call is called in, and a portable multi-media player has a touch screen having vibrators for getting tactile feedback.
A vibrator has a moving unit moving along a linear direction is called linear vibrator. Linear vibrators are widely used in consumer products and are disclosed in U.S. Pat. No. 6,466,682 B2 issued on Oct. 15, 2002, and U.S. Pat. No. 7,099,489 B2 issued on Aug. 29, 2006. The vibrator is mounted on a mounting surface of a printed circuit board, and the moving unit thereof is actuated to move along a direction perpendicular to the mounting surface. However, the movement along the direction perpendicular to the mounting surface increases the height of the vibrator.
So, it is necessary to provide a new vibrator for solving the problem mentioned above.
In one embodiment of the present invention, a linear vibrator is disclosed. The linear vibrator includes a housing having a base and a cover, a number of elastic members connected to the housing, a moving unit suspended inside the housing by the elastic members, a PCB (Printed Circuit Board) covered by the housing, and a coil mounted on the PCB. The base has a bottom wall, a plurality of sidewalls extending vertically from the bottom wall, and a blocking ring extending form a central portion of the bottom wall. The moving unit has a magnet assembly and at least a pair of patches. The moving unit vibrates along a direction parallel to the bottom wall. The patches may contact the blocking ring during the vibration of the moving unit.
Other features and advantages of the present invention will become more apparent to those skilled in the art upon examination of the following drawings and detailed description of an exemplary embodiment.
Reference will now be made to describe the exemplary embodiment of the present invention in detail.
A linear vibrator is mounted on a printed circuit board for generating tactile vibration. Referring to
The elastic members 14 are positioned on the base 12, preferably on the sidewalls 121 of the base 12. The weight 15 is suspended in the receiving space by the elastic members 14. The weight 15 includes a main body 151 and a plurality of positioning portions 152 extending from the main body 151. The positioning portions 152 are used for assembling with the elastic members 14. The main body 151 defines a through hole 153 in a middle portion thereof for receiving the magnet assembly 16 therein. Thus, the magnet assembly 16, together with the weight 15, is suspended in the receiving space by the elastic members 14, i.e., the moving unit is suspended in the receiving space. In fact, the magnet assembly 16 may solely be a moving unit without the weight 15, and can be directly connected to the elastic members 14. In addition, if the weight 15 is used as a part of the moving unit, the weight 15 can be made from materials having densities higher than 7.8 g/cm3.
Referring to
The magnet assembly 16 has a first magnet part 16a and a second magnet part 16b, wherein, the first magnet part 16a has magnetic poles opposite to those of the second magnet part 16b, as shown in
As the direction of vibration is parallel to the bottom wall, a height of the linear vibrator can be reduced.
During vibration, the elastic members 14 is constantly and alternatively compressed and stretched. If the vibration amplitude exceeds the maximum elastic deformation of the elastic members 14, the elastic members 14 may be damaged. Referring
Preferably, the base 12 further defines a blocking ring 124 extending form a central portion of the bottom wall 122, the blocking ring 124 forming an accommodating space (not labeled). While assembled, the coil 13 is partially received in the accommodating space. The blocking ring 124 is also located in the vibrating scope of the moving unit. According to the blocking ring 124, the moving unit defines at least a pair of patches 155. During the vibration of the moving unit, the patches 155 can withstand the moving unit by contacting the blocking ring 124 for limiting the vibration amplitude, together with the blocking masses 123. Again, when the moving unit is still, a distance between the one of the patch and a part contacting the blocking piece of the blocking ring 124 is smaller than the effective elastic displacement of the elastic member 14.
As the vibrating direction is parallel to the PCB 20, a height of the vibrator is accordingly reduced. And the elastic members 14 are effectively protected from plastic deformation by the blocking ring 124, and the patches 155.
While the present invention has been described with reference to a specific embodiment, the description of the invention is illustrative and is not to be construed as limiting the invention. Various of modifications to the present invention can be made to the exemplary embodiment by those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2009 2 0260393 U | Nov 2009 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3312841 | Shinobu Makino | Apr 1967 | A |
7550880 | Pusl | Jun 2009 | B1 |
20080306332 | Choi et al. | Dec 2008 | A1 |
20090096299 | Ota et al. | Apr 2009 | A1 |
20110089772 | Dong et al. | Apr 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20110115311 A1 | May 2011 | US |