1. Field of the Invention
The invention relates to an electronic device and, more particularly, to a linear vibrator for an electronic device.
2. Brief Description of Prior Developments
Vibration modules are commonly used in mobile phone products and devices for providing output functionality (such as an alert) in response to incoming calls or messages. Vibration modules generally convert electricity to vibration force to excite (or obtain) a user's attention when, for example, receiving calls in a noisy environment. Vibration modules may also be utilized to provide a user with a silent alert (such as during silent or meeting conditions where the hands free speakers are muted, for example) or where other haptic feedback is utilized. As such, vibration functionality is generally one of the most consumer demanded features for providing an indication of an incoming call or message(s) received on an electronic device.
The demand for continuous size miniaturization generates challenges to implement improved vibrator functionality for electronic devices. Conventional vibrator/vibration modules generally have limited functionality/capacity (such as response times, for example) and have size constraints (such as component height, for example) which may be difficult to integrate in thin devices. Accordingly, there is a need to provide an improved vibrator configuration for electronic devices.
In accordance with one aspect of the invention, an apparatus is disclosed. The apparatus includes a housing, a first piezo element, a second piezo element, and a mass. The first piezo element and the second piezo element are inside the housing. The mass is movably mounted inside the housing. The mass is configured to move inside the housing in response to a displacement of at least one of the first piezo element and the second piezo element. The mass is simultaneously in direct contact with the first piezo element and the second piezo element.
In accordance with another aspect of the invention, an apparatus is disclosed. The apparatus includes a device housing, electronic circuitry, and a vibrator module. The device housing includes a front face and an opposite back face. The electronic circuitry is in the device housing. The vibrator module is configured to vibrate the device housing. The vibrator module includes a module housing, a first piezo element, and a movable mass. The first piezo element extends from the module housing. The mass is proximate the first element. The first piezo element is configured to be displaced in a direction substantially parallel to the front face and/or the back face of the device housing.
In accordance with another aspect of the invention, a method is disclosed. A device housing having a front face and a back face is provided. Electronic circuitry is installed in the device housing. A vibrator module configured to vibrate the device housing is provided. The vibrator module includes a first piezo element, a second piezo element, and a movable mass. The movable mass is in contact with the first and the second piezo elements.
In accordance with another aspect of the invention, a method is disclosed. A first displacement of at least one piezo element is controlled in a vibrator module of a device. A mass of the vibrator module is moved in a first direction in response to the first displacement of the at least one piezo member. The first direction is substantially parallel to a front face and/or a back face of the device. A second displacement of the at least one piezo element is controlled. The mass is moved in a second direction in response to the second displacement of the at least one piezo member. The second direction is substantially opposite the first direction.
In accordance with another aspect of the invention, a method is disclosed. A first voltage is applied to a first piezo element. The first piezo element is configured to deflect in a first direction in response to the first voltage. The first voltage is applied to a second piezo element. The second piezo element is configured to deflect in the first direction in response to the first voltage. A mass between the first and the second piezo elements is configured to move in a substantially linear fashion within a housing in response to the deflection of at least one of the first and the second piezo elements.
In accordance with another aspect of the invention, a program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine for performing operations to vibrate a housing of a device is disclosed. A first voltage is applied to a first piezo element. The first piezo element is configured to deflect in a first direction in response to the first voltage. The first voltage is applied to a second piezo element. The second piezo element is configured to deflect in the first direction in response to the first voltage. A mass between the first and the second piezo elements is configured to move in a substantially linear fashion within the housing in response to the deflection of at least one of the first and the second piezo elements.
The foregoing aspects and other features of the invention are explained in the following description, taken in connection with the accompanying drawings, wherein:
Referring to
According to one example of the invention shown in
The electronic device 10 further comprises a vibrator module 24 (see also
The vibrator module 24 comprises a component housing 26, a moveable mass 28, a first piezo element 30 and a second piezo element 32. Various embodiments of the invention provide for linear movement of the mass 28 with the piezo elements 30, 32.
The component housing (or module housing) 26 is mounted inside the device housing 12. According to one embodiment, the component housing 26 may be mounted directly to a printed wiring board (PWB) of the device 10. However, in alternate embodiments the module housing 26 may be provided at any suitable location proximate the device housing 12. For example, a portion of the module housing may be at an exterior portion of the device housing. Additionally, it should be noted that according to various exemplary embodiments of the invention, the component housing 26 (and the vibrator module 24) may be integrated, or mounted, on the PWB in a substantially similar fashion as the conventional vibrator modules. The module housing 26 comprises a top face 34, a bottom face 36, a first side 38, a second side 40, a third side 42, and a fourth side 44. The module housing 26 comprises a general rectangular box shape wherein the bottom face 36 is opposite the top face 34 and wherein the sides 38, 40, 42, 44 extend between the top face 34 and the bottom face 36. However, it should be understood that the in alternate embodiments, any suitable shape may be provided.
As shown in
The movable mass 28 may be movably mounted inside the module housing 26. The mass 28 also comprises a top face 50, a bottom face 52, a first side 54, a second side 56, a third side 58, and a fourth side 60. The mass 28 may comprise a general race track profile shape. However, in alternate embodiments any suitable shape may be provided. The module housing 26 and mass 28 may be suitably sized and shaped to allow for sliding contact therebetween. The module housing 26 comprises a receiving area 62 having an interior top face 64, an interior bottom face 66, an interior third side 68, and an interior fourth side 70. The slidably mounted configuration (of the mass 28) may be provided between the mass top face 50 and the interior top face 64, the mass bottom face 52 and the interior bottom face 66, the mass third side 58 and the interior third side 68, and the mass fourth side 60 and the interior fourth side 70. This sliding contact configuration allows for the mass to be linearly displaced along a central axis 72 (extending substantially parallel to the sides 38, 40, 42, 44 and faces 34, 36) of the module housing 26. This substantially straight line (or translational) motion may further be provided as linear motion in a direction substantially parallel to the front face 46 and/or the back face 48 of the device housing 12.
The piezo elements 30, 32 extend between the third side 68 and the fourth side 70 of the module housing 26. The first piezo element 30 is proximate the first side 38 of the module housing with a space (or gap) 74 therebetween. Similarly the second piezo element 32 is proximate the second side 40 of the module housing 26 with a space (or gap) 76 therebetween. The piezo elements 30, 32 may be mounted in the housing 26 in any suitable fashion which allows for the above mentioned space (or gap) 74, 76. The space (or gap) 74, 76 may be suitably sized and shaped to allow for a displacement/deflection of the piezo element 30, 32.
The piezo elements 30, 32 may be multi layer piezos. However, in alternate embodiments any suitable type piezo element(s) may be provided. For example, the piezo elements may be beam type piezo structures. In addition, as shown in the figures, soldering terminals 78 may be connected proximate ends of the piezo elements 30, 32.
Although FIGS. 2 and 4-6 illustrate a first end of the piezo element 30, 32 connected to the interior third side 68 and a second end of the piezo element 30, 32 connected to the interior fourth side 70, this configuration is not required. For example, referring now also to
Embodiments of the invention provide for a fast (vibration) response by utilizing piezo elements, stronger alerts (or vibration force) by providing a moving mass configuration, and no (unwanted) ringing due two direction support by the piezos.
The mass 28 is disposed between the first piezo element 30, 130 and the second piezo element 32, 132 such that at least a portion of the first side 54 and the second side 56 may be in direct contact with the piezo elements 30, 32, 130, 132. According to some embodiments of the invention, the first and the second piezo elements are continuously and simultaneously in direct contact with the mass 28 (wherein there is no “open gap” at contact points between the piezo elements and the mass). However, it should be noted that in alternate embodiments, any suitable configuration may be provided. For example, in some embodiments, one or both of the piezo elements may not be in continuous and simultaneous direct contact with the mass.
According to some embodiments of the invention, the two actuators (or piezo elements) may provide for reducing de-emphasis of a mass spring system. In addition, embodiments of the invention provide for fast acceleration of the mass (with very small travel).
According to various embodiments of the invention, the vibrator module 24, 124 provides a linear type vibrator (with piezo elements) configured for providing a strong vibration force, with fast response times, while also allowing for a thin component design configuration.
As shown in the figures, the weight of the movable mass 28 may be supported within the housing 26 from one contact point by the two piezo elements. According to some embodiments of the invention, the working principle of the piezo elements is that they are driven at a resonance frequency. The vibrator module 24, 124 may also have its own resonance frequency (and there can be several, depending on loads at the piezo elements) and it can be classified as a forced oscillator. According to some examples of the invention, some resonance frequencies may be avoided such that the best quality haptic response is achieved while minimizing any ringing phenomenon and long “breaking” issues.
According to various exemplary embodiments of the invention, a driving signal (applied to the piezo elements) could be about 3-7.5 Vrms audio signal with haptics optimized frequency window, for example from about 100 Hz to 500 Hz. It should be noted that although there are two piezo elements, some examples of the invention may provide for both piezo elements to have the same signal and same polarity in order to reach optimized performance to move the weight accurately without delays and long fall back times. But of course, it should be understood that in alternate embodiments, each of the piezo elements may be driven separately.
Any suitable driver for the vibrator module may be provided. For example, in some embodiments of the invention, the driver may be a high efficiency charge pump (ceramic piezo driver circuitry), wherein supply voltage and output bandwidth includes the ranges within suitable specifications. The output voltage may be overvoltage protected (as piezo elements may generate voltage when deflected/displaced) and DC blocked output for protecting the piezo elements. Additionally, environmental aspects such as noise and signals levels may be considered as well.
According to some embodiments of the invention, the linear type vibrator module 24, 124 may be used as part of gaming and/or music playback functions when a suitable driver is accommodated with the playback system. For instance, the module 24, 124 may provide faster response times where vibration type playback could be synchronized to music or a ringtone. For example, when the device 10 is in a ‘silent’ or ‘meeting’ mode, ringtones, music or other audible device indicators may be muted (and thus, are not playing). However, the system could be configured to analyze the frequency response of the music file (adaptively) by techniques such as octave band analysis, windowed frequency spectrum in segments, and/or windowing by applying Fourier analysis, for example. It should be understood that these are merely non-limiting examples and any suitable analysis technique may be provided. According to some embodiments of the invention, it should be noted that with respect to the octave band, the number of octaves can be different within a specific frequency range which may be pre-defined, for example between about 100 Hz and about 10000 Hz, and each octave may have a dedicated center frequency. This would allow the vibrator module 24, 124 to be functionally operable such that the module 24, 124 provides vibrations corresponding to the analyzed frequency. For example, in one embodiment the module 24, 124 may vibrate in a specific pattern which is dependent on the content of the music/ringtone file. This would allow a user to recognize who is calling based on individualized vibration (corresponding to the ringtone) which may specific for a certain caller(s). This provides for a user of the device 10 to distinguish between different callers by sensing different vibration patterns (as users can set ringtones individually for their desired contacts). Additionally, it should be noted that although the examples above describe the vibration patterns with respect to ring tones and music files, alternate embodiments may utilize the vibration patterns in any suitable fashion.
Referring now also to
Technical effects of any one or more of the exemplary embodiments of the invention provide a linear type vibrator (with piezo elements) configured for thin mobile phone products with a fast response and more effective vibration force when compared to conventional configurations. Conventional vibrator module (actuator) configurations may comprise DC motor driven components which may not provide adequate response times (for example, from software control to movement) for device vibration modes such as a silent alert mode or any other mode utilizing a haptics feature.
The conventional vibrator modules based on DC motors or moving coil technologies (such as coil/magnet driven linear actuators, multilayer piezo actuators, DC motor actuators, step motor actuators, for example) may not be efficient in terms of mechanical size and functionality and therefore may be designed for different categories/applications. They are generally designed for specific needs across mobile phone products and may be limited depending on the mobile phone product size (such as component height, for example), weight and application category (such as gaming applications, general communication, for example). Additionally, limitations regarding size constraints become evident as the conventional vibrator module configurations can be difficult to integrate in today's thin and small products (due to their size and specifications). Some conventional vibrator module configurations may also produce unwanted ringing (or vibrating) issues (for example, ringing of mass-spring system).
Technical effects of any one or more of the exemplary embodiments of the invention may provide for a reduced product/device size (especially in height) and a stronger actuator force, when compared to conventional modules. For example, various embodiments of the invention may provide for a vibrator module thickness can be relatively low (such as about 2.0 mm). Additionally, according to some embodiments of the invention, unwanted ringing and breaking problems may be alleviated. Further technical effects according to various embodiments of the invention provide for improved electromagnetic interference (EMI) conditions as conventional magnet and moving coil (or dc motor components) generally interfere and cause EMI issues with other components in mobile phone products.
According to one example of the invention, an apparatus is disclosed. The apparatus includes a housing, a first piezo element, a second piezo element, and a mass. The first piezo element and the second piezo element are inside the housing. The mass is movably mounted inside the housing. The mass is configured to move inside the housing in response to a displacement of at least one of the first piezo element and the second piezo element. The mass is simultaneously in direct contact with the first piezo element and the second piezo element.
According to one example of the invention, an apparatus is disclosed. The apparatus includes a device housing, electronic circuitry, and a vibrator module. The device housing includes a front face and an opposite back face. The electronic circuitry is in the device housing. The vibrator module is configured to vibrate the device housing. The vibrator module includes a module housing, a first piezo element, and a movable mass. The first piezo element extends from the module housing. The mass is proximate the first element. The first piezo element is configured to be displaced in a direction substantially parallel to the front face and/or the back face of the device housing.
According to one example of the invention, a program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine for performing operations to vibrate a housing of a device is disclosed. A first voltage is applied to a first piezo element. The first piezo element is configured to deflect in a first direction in response to the first voltage. The first voltage is applied to a second piezo element. The second piezo element is configured to deflect in the first direction in response to the first voltage. A mass between the first and the second piezo elements is configured to move in a substantially linear fashion within the housing in response to the deflection of at least one of the first and the second piezo elements.
It should be understood that components of the invention can be operationally coupled or connected and that any number or combination of intervening elements can exist (including no intervening elements). The connections can be direct or indirect and additionally there can merely be a functional relationship between components.
It should be understood that the foregoing description is only illustrative of the invention. Various alternatives and modifications can be devised by those skilled in the art without departing from the invention. Accordingly, the invention is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6389302 | Vance | May 2002 | B1 |
6768246 | Pelrine et al. | Jul 2004 | B2 |
20040032795 | Baroni et al. | Feb 2004 | A1 |
20060091765 | Oouchi et al. | May 2006 | A1 |
20070013270 | Sashida et al. | Jan 2007 | A1 |
20070085633 | Nakatsuka et al. | Apr 2007 | A1 |
20070090725 | Kamiyama et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
2 137 024 | Sep 1984 | GB |
WO-0065805 | Nov 2000 | WO |
Entry |
---|
M. Renaud et al., “Scavenging Energy From Human Body: Design of a Piezoelectric Transducer”, Digest of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea; Jun. 5-9, 2005; ISBN 978-0-7803-8994-6, pp. 784-787. |
Number | Date | Country | |
---|---|---|---|
20100127601 A1 | May 2010 | US |