1. Field of the Invention
The present invention relates to a linear voltage regulator and, more particularly, to a linear voltage regulator capable of enhancing the efficiency during a light-load mode.
2. Description of the Related Art
Voltage regulators supply a required output current at a regulated output voltage to a load. Linear voltage regulators employ a power transistor operated in the ohmic region as a passive device. The output voltage is fed back to control a variable resistance of the power transistor for obtaining the regulated output voltage from an input voltage, e.g. a battery voltage, minus a potential difference across the variable resistance. During a light-load mode, the necessary output current is reduced but the current consumption of an error amplifier remains unchanged. Therefore, the conventional linear voltage regulator has a poor efficiency during the light-load mode.
In response to the in-time current requirement by the load 15, the linear voltage regulator 10 supplies a larger or smaller output current Iout with the output voltage Vout regulated at [(R1+R2)/R2]*Vref. For achieving a sufficient current driving capability so as to supply a larger output current Iout, the power transistor 11 must have a large enough dimension. However, the large-dimension power transistor 11 causes a larger gate capacitance. For more appropriately controlling the gate of the power transistor 11, the error amplifier 12 must be designed to have a smaller output impendence, which results in a larger current consumption. Therefore, when the linear voltage regulator 11 is operated in the light-load mode, i.e. the output current Iout is tiny or close to zero, the efficiency of the linear voltage regulator 10 deteriorates due to the large current consumption caused by the error amplifier 12.
Therefore, it is desired to develop a linear voltage regulator capable of enhancing the efficiency during a light-load mode.
In view of the above-mentioned problems, an object of the present invention is to provide a linear voltage regulator capable of achieving an optimum efficiency during a light-load mode.
Another object of the present invention is to provide a linear voltage regulator capable of achieving a sufficient current driving capability.
According to one aspect of the present invention, a linear voltage regulator employs two power transistors connected in parallel between an input voltage and an output voltage. One of the power transistors has a larger current driving capability, i.e. a larger dimension of a current path, and the other has a smaller current driving capability, i.e. a smaller dimension of a current path. During a light-load mode, the linear voltage regulator according to the present invention activates nothing but the power transistor having the smaller current driving capability to reduce the current consumption of an error amplifier, thereby enhancing the efficiency.
Furthermore, the linear voltage regulator according to the present invention employs a current sensing unit for detecting a current flowing through the power transistor having the smaller current driving capability. When the current detected by the current sensing unit is larger than a predetermined threshold current value, it is concluded that the linear voltage regulator is operated in a heavy-load mode. During the heavy-load mode, the power transistor having the larger current driving capability is additionally activated through a gate control circuit by a mode selection circuit, thereby providing a large enough output current to a load.
The above-mentioned and other objects, features, and advantages of the present invention will become apparent with reference to the following descriptions and accompanying drawings, wherein:
The preferred embodiments according to the present invention will be described in detail with reference to the drawings.
The gate control circuit 22 is controlled by a mode selection signal SS output from a mode selection circuit 23, for determining whether the gate of the heavy-load power transistor 11 is connected to the output terminal of the error amplifier 12 or to the input voltage Vin. More specifically, the mode selection circuit 23 may be considered as a circuit external to the linear voltage regulator 20, which detects the current flowing through the light-load power transistor 21 and then modulates the mode selection signal SS so as to determine whether to activate the heavy-load power transistor 11 or not, thereby effectively achieving an optimum efficiency during the light-load mode as well as a sufficient current driving capability during the heavy-load mode.
The mode selection circuit 23 may include a current sensing unit 24 and a current comparing unit 25. The current sensing unit 24 generates a detection current signal Isen, which is proportional to the current flowing through the light-load power transistor 21. The current comparing unit 25 compares the detection current signal Isen with a predetermined threshold current signal Ith. When the detection current signal Isen is smaller than the threshold current signal Ith, i.e. the linear voltage regulator 20 is operated in the light-load mode, the mode selection signal SS causes the gate control circuit 22 to prevent the error signal Verr from being supplied to the heavy-load power transistor 11 and to turn off the heavy-load power transistor 11. In this case, the error amplifier 12 needs to control nothing but the light-load power transistor 21 having the smaller dimension, and therefore its current consumption is reduced. Since the necessary output current Iout is tiny during the light-load mode, simply is the light-load power transistor 21 enough to meet the requirement of the current driving capability. When the detection current signal Isen is larger than the threshold current signal Ith, i.e. the linear voltage regulator 20 is operated in the heavy-load mode, the mode selection signal SS causes the gate control circuit 22 to allow the error signal Verr to be supplied to the heavy-load power transistor 11. As a result, the error amplifier 12 controls both of the light-load power transistor 21 and the heavy-load power transistor 11 for effectively supplying a large enough output current Iout during the heavy-load mode.
Therefore, the linear voltage regulator 20 according to the present invention effectively achieves an optimum efficiency during the light-load mode as well as a sufficient current driving capability during the heavy-load mode.
In the preferred embodiment shown in
In the preferred embodiment shown in
For preventing the undesirable noise occurred at transient periods when the detection current signal Isen is larger or smaller than the threshold current signal Ith, the current comparing unit 25 is further provided with NMOS transistors Q4 and Q5 for performing the hysteresis effect in regard to the current comparison. More specifically, the transistor Q4 has a gate and a drain connected respectively to the gate and the drain of the transistor Q3. The transistor Q5 functions as a switch under the control of the mode selection signal SS output from the inverter INV2. When the mode selection signal SS is at the low voltage level, the switching transistor Q5 is turned off for preventing the transistor Q4 from forming a current path. In this case, the detection current signal Isen is inevitably smaller than the threshold current signal Ith so as to support the potential at the drain of the transistor Q3 at the high voltage level. Once the detection current signal Isen increases over the threshold current signal Ith, the potential at the drain of the transistor Q3 is reduced such that the mode selection signal SS is changed to the high voltage level. In this case, the switching transistor Q5 is turned on by the high-level mode selection signal SS for allowing the transistor Q4 to form a current path, which in effect causes the potential at the drain of the transistor Q3 to reduce further. Even if, during the transient period, the detection current signal Isen is reduced to become slightly smaller than the threshold current signal Ith due to any kinds of disturbance or interference, the potential at the drain of the transistor Q3 is effectively prevented from being pulled up to cause the state transition of the mode selection signal SS because the current path provided by the transistor Q4 is able to accommodate part of the threshold current signal Ith.
While the invention has been described by way of examples and in terms of preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications.
Number | Name | Date | Kind |
---|---|---|---|
4779037 | LoCascio | Oct 1988 | A |
5528127 | Streit | Jun 1996 | A |
6246221 | Xi | Jun 2001 | B1 |
6469480 | Kanakubo | Oct 2002 | B1 |
6677735 | Xi | Jan 2004 | B1 |
6677737 | Hamon et al. | Jan 2004 | B1 |
6806690 | Xi | Oct 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20060170401 A1 | Aug 2006 | US |